scholarly journals Non-autonomous autophagy in germline stem cell proliferation

Cell Cycle ◽  
2017 ◽  
Vol 16 (16) ◽  
pp. 1481-1482 ◽  
Author(s):  
Kristina Ames ◽  
Alicia Meléndez
Science ◽  
2011 ◽  
Vol 334 (6058) ◽  
pp. 990-992 ◽  
Author(s):  
E. M. Fast ◽  
M. E. Toomey ◽  
K. Panaram ◽  
D. Desjardins ◽  
E. D. Kolaczyk ◽  
...  

2015 ◽  
Vol 117 (4) ◽  
pp. 844-852 ◽  
Author(s):  
Hailong Mu ◽  
Na Li ◽  
Jiang Wu ◽  
Liming Zheng ◽  
Yuanxin Zhai ◽  
...  

PLoS Biology ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. e2005004 ◽  
Author(s):  
Tomotsune Ameku ◽  
Yuto Yoshinari ◽  
Michael J. Texada ◽  
Shu Kondo ◽  
Kotaro Amezawa ◽  
...  

2020 ◽  
Vol 168 (6) ◽  
pp. 589-602
Author(s):  
Marika Rikitake ◽  
Ayako Matsuda ◽  
Daisuke Murata ◽  
Katsufumi Dejima ◽  
Kazuko H Nomura ◽  
...  

Abstract Stem cells divide and undergo self-renewal depending on the signals received from the stem cell niche. This phenomenon is indispensable to maintain tissues and organs in individuals. However, not all the molecular factors and mechanisms of self-renewal are known. In our previous study, we reported that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) synthesized in the distal tip cells (DTCs; the stem cell niche) are essential for germline stem cell proliferation in Caenorhabditis elegans. Here, we characterized the GPI-APs required for proliferation. We selected and verified the candidate GPI-APs synthesized in DTCs by RNA interference screening and found that F57F4.3 (GFI-1), F57F4.4 and F54E2.1 are necessary for germline proliferation. These proteins are likely involved in the same pathway for proliferation and activated by the transcription factor PQM-1. We further provided evidence suggesting that these GPI-APs act through fatty acid remodelling of the GPI anchor, which is essential for association with lipid rafts. These findings demonstrated that GPI-APs, particularly F57F4.3/4 and F54E2.1, synthesized in the germline stem cell niche are located in lipid rafts and involved in promoting germline stem cell proliferation in C. elegans. The findings may thus shed light on the mechanisms by which GPI-APs regulate stem cell self-renewal.


Development ◽  
2021 ◽  
Vol 148 (15) ◽  
Author(s):  
Kumari Pushpa ◽  
Sunayana Dagar ◽  
Harsh Kumar ◽  
Diksha Pathak ◽  
Sivaram V. S. Mylavarapu

ABSTRACT The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.


Sign in / Sign up

Export Citation Format

Share Document