Injury risk functions based on population-based finite element model responses: Application to femurs under dynamic three-point bending

2018 ◽  
Vol 19 (sup1) ◽  
pp. S59-S64
Author(s):  
Gwansik Park ◽  
Jason Forman ◽  
Taewung Kim ◽  
Matthew B. Panzer ◽  
Jeff R. Crandall
2018 ◽  
Vol 18 (08) ◽  
pp. 1840024
Author(s):  
MONAN WANG ◽  
RONGPENG LI ◽  
JUNTONG JING

Living body or corpse could be replaced with the virtual human tissue model for biomechanical experimental study, which effectively avoids the non-reusability, great social controversy, huge costs and difficulty in extracting parameters, and finally, the accurate analysis results are obtained. Unlike the previous lower limb models, the finite element models of hip and thigh were established based on the concept of muscle group in this paper. The cortical bones of hip bone and femur were set as *MAT_PIECEWISE_LINEAR_ PLASTICITY. The material of cancellous bone was set as *MAT_ELASTIC_PLASTIC_ WITH_DAMAGE_FAILURE. The material of articular cartilage was set as *MAT_ISOTROPIC_ELASTIC. The materials of muscle and fat were set as *MAT_VISCOELASTIC. The accuracy of the finite element model was verified by dynamic three-point bending experiment of the thighs. Mechanical simulation was carried out to the stump-prosthetic socket and the comfort of socks by the established model. The simulation results were all between the upper and lower bounds of the experimental results in the dynamic three-point bending experiment of the thighs where the loads were separately applied to one-third of the distal end of thighs and the middle part of thighs. The simulation results of the stump-prosthetic socket example show that the optimal elastic modulus of silicone pad is 2.5[Formula: see text]MPa. Simulation results of socks comfort show that the distribution of stress and deformation of the anterior and posterior thighs is different when the human lower limbs are in stockings. The established simulation model meets the accuracy requirement and can replace the living body or corpse to carry out biomechanical experimental study. The finite element simulation results converge, and the time to complete a finite element calculation is less than or equal to 10[Formula: see text]min.


2016 ◽  
Vol 16 (08) ◽  
pp. 1640018 ◽  
Author(s):  
MICHÈLE BODO ◽  
SÉBASTIEN ROTH

This study deals with free fall accident analysis involving adults, and their numerical replications using a finite element model of the human thorax. The main purpose is to determine the role of body position at impact in the thorax injury risk appearance. For this study, cases of real-world free-fall provided by an emergency department were selected and investigated. These cases involved both male and female with an age range of 20 to 63 years, who sustained accidental free-fall with both injured and uninjured cases. The examination of the patients' medical record provided helpful information to accurately perform numerical replications with the finite element model HUByx (Hermaphrodite Universal Biomechanical yx model) which was already validated for various experimental tests in the field of automobile, ballistic impacts and blast. The results of simulations at different impact location allowed highlighting the crucial influence of the body orientation in the risk of thoracic injury occurrence.


Author(s):  
Frank Meyer ◽  
John Humm ◽  
Narayan Yoganandan ◽  
Aleksander Leszczynski ◽  
Nicolas Bourdet ◽  
...  

2015 ◽  
Author(s):  
Samantha L. Schoell ◽  
Ashley A. Weaver ◽  
Jillian E. Urban ◽  
Derek A. Jones ◽  
Joel D. Stitzel ◽  
...  

1999 ◽  
Vol 121 (2) ◽  
pp. 206-214 ◽  
Author(s):  
M. L. Villarraga ◽  
R. C. Anderson ◽  
R. T. Hart ◽  
D. H. Dinh

The development of a three-dimensional finite element model of a posteriorly plated canine cervical spine (C3-C6) including contact nonlinearities is described. The model was created from axial CT scans and the material properties were derived from the literature. The model demonstrated sufficient accuracy from the results of a mesh convergence test. Significant steps were taken toward establishing model validation by comparison of plate surface strains with a posteriorly plated canine cervical spine under three-point bending. This model was developed to better characterize the contact pressures at the various interfaces under average physiologic canine loading. The analysis showed that the screw–plate interfaces had the highest values of all the mechanical parameters evaluated.


Sign in / Sign up

Export Citation Format

Share Document