mesh convergence
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 26)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
pp. 1-20
Author(s):  
J. D. Burch ◽  
D. Han ◽  
S. N. Averkin

Abstract This paper presents a study of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X’s USim® software to quantify the nozzle’s capabilities. A 2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T’s Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were taken to examine plume evolution over pulse cycles. The resulting pressure, velocity, and density fields were analysed for nozzle angles from 0° to 14°. It was found that actual plume divergence was small compared to the nozzle angle. Even with an offset angle of 14° for the magnetic nozzle, the plume vector angle was only about 2° for argon and less than 1° for xenon. The parameters that had the most effect on the vectoring angle were found to be the coil current and inlet velocity.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3092
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Spillway design is key to the effective and safe operation of dams. Typically, the flow is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades, advances in computational fluid dynamics (CFD) made available several numerical tools to aid hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method. Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant computational resources. An assessment is performed in a spillway offset aerator, comparing the two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy, the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency and stability of this model.


Author(s):  
Sachin Kumar Nikam ◽  
◽  
Sandeep Jaiswal ◽  

This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.


2021 ◽  
Vol 13 (3) ◽  
pp. 195-204
Author(s):  
Lovepreet SINGH ◽  
Nirmal Rakeshbhai RAVALIYA ◽  
M. Abdul AKBAR

Despite the greatest efforts, accidents continue to happen during the process of rocket launching, either in the form of generated blast wave or the debris that flies and hits random objects. In this paper, the impact of blast loading created by a rocket launch on the tie connection and the three-hinged arch is studied using the finite element model in ABAQUS. The impact of rocket launching was modelled using the physical characteristics/geometry of the launch pad, and a blast load intensity equivalent to 20,000lbs of TNT is applied using the CONWEP module. The tie connection and three-hinged arch after validation and mesh convergence study are applied with service loads in concurrence with the blast loading. The additional impact of blast loads on the static and dynamic response of the structure is studied. The distance of the structures from the point of blast (rocket launching site) is varied, and parametric studies are carried out to arrive at detailed guidelines on the minimum safety distance that stand-alone civil infrastructure should follow in order to minimize the rocket launching impact.


2021 ◽  
Author(s):  
Guanyang Xue ◽  
Xuanhong Cheng ◽  
Alparslan Oztekin

Abstract Computational Fluid Dynamics (CFD) simulations have been performed in a 2D cross-section of the microchannel to characterize the viscoelastic flow field using OpenFOAM with customized stabilizing methods. The continuity and momentum equations coupled with the Giesekus constitutive model are solved. The computational domain consists of a straight main channel that is 100 μm in width and a 1:4 square-shaped cavity in the middle of the channel. The mesh convergence study is performed with both structured and unstructured cells. Flow and stress fields are compared with different cell densities. The numerical study is carried out on various Deborah numbers (De). The first normal stress difference is computed to examine the elastic lift force for future studies for nanoparticle separations. The vortex on the expansion side shrinks while the contraction side expands as De is increased. A banded zone of stronger N1 in the bulk region of the cavity, observed at higher De, could be favorable in particle separation applications. As the simulation process being validated, this study can help with future improvements to achieve higher flow rates.


Author(s):  
Muhammad Irfan Shahrin ◽  
◽  
Rini Asnida Abdullah ◽  
Mohd Nur Asmawisham Alel ◽  
Radzuan Saari ◽  
...  

Mesh convergence is a vital issue that needs to be addressed in a numerical model. This study investigated the effects of mesh element number on the Discrete Element Method (DEM) to granite rock response under compression loading. This study used the 3D finite-element code LS-DYNA to model the Unconfined Compression Test (UCT) numerical simulation. Models with five different mesh types were conducted for convergence mesh, namely normal mesh, fine mesh, super fine mesh, coarse mesh, and super coarse mesh. The mesh convergence of rock media has been conducted using DEM and steel plates simulated using the Finite Element Method (FEM). The DEM-FEM numerical analysis is compared with the results obtained from the experimental test. The best mesh was obtained as the simulation could reproduce the stress-strain curve trends, the failure behaviour and compression strength observed in the experimental test. The normal mesh was selected as the best mesh type in this study based on the comparisons that have been made. This study shows that the DEM-FEM numerical simulation can represent granite rock and can be used for further study based on mesh convergence.


2021 ◽  
Vol 9 (3) ◽  
pp. 250
Author(s):  
Ilan Robin ◽  
Anne-Claire Bennis ◽  
Jean-Claude Dauvin

The overall potential for recoverable tidal energy depends partly on the tidal turbine technologies used. One of problematic points is the minimum flow velocity required to set the rotor into motion. The novelty of the paper is the setup of an innovative method to model the fluid–structure interactions on tidal turbines. The first part of this work aimed at validating the numerical model for classical cases of rotation (forced rotation), in particular, with the help of a mesh convergence study. Once the model was independent from the mesh, the numerical results were tested against experimental data for both vertical and horizontal tidal turbines. The results show that a good correspondence for power and drag coefficients was observed. In the wake, the vortexes were well captured. Then, the fluid drive code was implemented. The results correspond to the expected physical behavior. Both turbines rotated in the correct direction with a coherent acceleration. This study shows the fundamental operating differences between a horizontal and a vertical axis tidal turbine. The lack of experiments with the free rotation speed of the tidal turbines is a limitation, and a digital brake could be implemented to overcome this difficulty.


Author(s):  
Romain Pinguet ◽  
Sam Kanner ◽  
Michel Benoit ◽  
Bernard Molin

Abstract The aim of this study is to develop a viscous numerical wave tank using a coupled solver between the wave generation and absorption toolbox waves2Foam, developed by Jacobsen et al. [1] and the overset method built in the open source CFD software OpenFOAM©. This wave tank can be used to analyze the behavior of Floating Offshore Wind Turbine (FOWT) in nonlinear waves. A mesh convergence analysis is presented on a simple 2D case in order to validate the CFD model. The results are compared to experimental data from the literature and show good agreement. The response of a floater developed for a FOWT is analyzed. The free surface elevation, heave and pitch motions are compared to experimental results from the literature. Comparisons between experimental data and numerical results are discussed.


2021 ◽  
Vol 247 ◽  
pp. 10014
Author(s):  
Vincent Novellino ◽  
Scott Palmtag

VERA is a suite of multiphysics codes which uses MPACT to model neutron transport in light water reactors (LWRs) [1]. In this paper, we validate MPACT by modeling critical experiments conducted at the IPEN/MB-01 and B&W facilities. We modeled critical loading experiments with a variety of different fuel pins and materials placed in the core. The experiments were modeled in two dimensions using MPACT and an axial buckling term. Default mesh parameters exist in MPACT for modeling larger reactor cores, and a mesh convergence study was performed to find appropriate mesh parameters for modeling the smaller critical reactors. The keff results show a consistent bias and small standard deviation for the IPEN/MB-01 reactor and a small bias and small standard deviation for the B&W facility. Overall, the results show that MPACT performs well for modeling small critical reactors.


Author(s):  
Gudlavalleti Vamsi Babu ◽  
V. Balakrishna Murthy

To protect the structural part of the rocket nozzle, an insulation liner is provided at its inner surface. Charring ablators are used for this purpose. The thickness of the insulation liner is one of the major design considerations of the nozzle. In the present analysis, an attempt has been made to predict thermal erosion (ablation) in the insulation liner through numerical studied CFD and FEA. The problem is modeled in ANSYS software. Fluid flow analysis is performed using the fluent module that works on the finite volume method, and the transient thermal module is used for the thermal analysis that works on the finite element method. Appropriate mesh convergence, residual convergence, and time step convergence exercises are made and the numerical results are verified with the analytical solution wherever possible. The possibility of reduction of thermal load due to the presence of char in ablator liner is considered and the thermal resistance in the region exposed to melting point temperature is altered to permit the propagation of thermal loads to the current pyrolysis front at any instant. The concept of this work is useful in the prediction of thermal ablation in rocket nozzles and in selecting the required thickness of the insulation layer.


Sign in / Sign up

Export Citation Format

Share Document