Three-dimensional free vibration analysis of rotating sandwich functionally graded truncated conical shells under various boundary conditions

Author(s):  
Chih-Ping Wu ◽  
Li-Yu Chiu
Author(s):  
Vahid Tajeddini ◽  
Abdolreza Ohadi ◽  
Mojtaba Sadighi

This paper describes a study of three-dimensional free vibration analysis of thick circular and annular functionally graded (FG) plates resting on Pasternak foundation. The formulation is based on the linear, small strain and exact elasticity theory. Plates with different boundary conditions are considered and the material properties of the FG plate are assumed to vary continuously through the thickness according to power law. The kinematic and the potential energy of the plate-foundation system are formulated and the polynomial-Ritz method is used to solve the eigenvalue problem. Convergence and comparison studies are done to demonstrate the correctness and accuracy of the present method. With respect to geometric parameters, elastic coefficients of foundation and different boundary conditions some new results are reported which maybe used as a benchmark solution for future researches.


2007 ◽  
Vol 04 (01) ◽  
pp. 81-108 ◽  
Author(s):  
ÖMER CIVALEK

This paper gives a relatively novel computational approach, the discrete singular convolution (DSC) algorithm, for the free vibration analysis of isotropic and orthotropic conical shells with different boundary conditions. The governing differential equations of vibration of the shell are formulated using Love's first approximation classical thin shell theory. In the proposed approach, the derivatives in both the governing equations and the boundary conditions are discretized by the method of DSC. Typical numerical results are presented illustrating the effect of various geometric and material parameters. The influence of boundary conditions on the frequency characteristics is also discussed. The obtained results are in excellent agreement with those in the literature.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


Sign in / Sign up

Export Citation Format

Share Document