Ensemble interpolation of missing wind turbine nacelle wind speed data in wind farms based on robust particle swarm optimized generalized regression neural network

2019 ◽  
Vol 16 (14) ◽  
pp. 1210-1219 ◽  
Author(s):  
Jie Du ◽  
Hongchuan Sun ◽  
Yijia Cao ◽  
Yubao Liu ◽  
Linlin Pan ◽  
...  
Author(s):  
Guolong Li ◽  
Hao Ke ◽  
Chuanzhen Li ◽  
Biao Li

Abstract This paper demonstrates the development of a thermal error model that is applied on the feed axis of machine tools and based on the neural network. This model can accurately predict the value of the axial thermal error that appears on machine feed axis. In principle, there is the generalized regression neural network (GRNN), which has the good nonlinear mapping ability and serves to construct the error model. About variables, the data of temperature and axial thermal error of machine feed axis are the inputs and outputs, respectively. The particle swarm optimization (PSO) is a component of this model, which serves to optimize the smoothing factor in GRNN, and the particle swarm optimization-based generalized regression neural network (PSO-GRNN) model is built. From experiment, the datum is acquired from a machining centre in four different feed rates. Thereafter, the back propagation (BP) neural network model, the traditional GRNN model, and the PSO-GRNN model were established, and the data collected from the experimentation are input in three models for prediction. Compared with the other two models used in this paper, the PSO-GRNN model can maintain higher prediction accuracy at different feed speed, and the prediction accuracy of it changes less in different feed rates. The proposed model solved the problem of generalization ability of the neural network at different feed rate, which shows good performance and lays a good foundation for further research like thermal error compensation.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012020
Author(s):  
Yiwen Hu ◽  
Yang Gao ◽  
Shuai Yang

Abstract Aiming at the problem of wind turbine output prediction, a wind power prediction method based on Improved Gray Wolf algorithm and optimized generalized regression neural network is proposed in this paper. Firstly, according to the daily similarity of wind speed and wind power, cluster analysis is used to classify the data. Considering that the degree of each factor affecting wind power output changes, based on the selection of similar days, an improved gray wolf algorithm is introduced to optimize the weight of each influencing factor. The two models of the first mock exam are selected to input the radial single mode function RBF and the back propagation (BP) network to predict the output of the wind turbine separately. The prediction results of the two models are input to the generalized regression neural network optimized by the Wolf Wolf algorithm and the nonlinear combination forecasting is carried out. The basis models are used to predict the output of the wind turbine. The example analysis of an area shows that the model can be closer to the real value in the peak and valley of the prediction curve and has higher prediction accuracy than the combined prediction model of single BP, RBF and non optimized general regression neural network (GRNN).


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3333
Author(s):  
Maria del Cisne Feijóo ◽  
Yovana Zambrano ◽  
Yolanda Vidal ◽  
Christian Tutivén

Structural health monitoring for offshore wind turbine foundations is paramount to the further development of offshore fixed wind farms. At present time there are a limited number of foundation designs, the jacket type being the preferred one in large water depths. In this work, a jacket-type foundation damage diagnosis strategy is stated. Normally, most or all the available data are of regular operation, thus methods that focus on the data leading to failures end up using only a small subset of the available data. Furthermore, when there is no historical precedent of a type of fault, those methods cannot be used. In addition, offshore wind turbines work under a wide variety of environmental conditions and regions of operation involving unknown input excitation given by the wind and waves. Taking into account the aforementioned difficulties, the stated strategy in this work is based on an autoencoder neural network model and its contribution is two-fold: (i) the proposed strategy is based only on healthy data, and (ii) it works under different operating and environmental conditions based only on the output vibration data gathered by accelerometer sensors. The proposed strategy has been tested through experimental laboratory tests on a scaled model.


Sign in / Sign up

Export Citation Format

Share Document