Integrated energy system multi-level planning model based on scenario reasoning, equipment selection, and capacity optimization

Author(s):  
Yongli Wang ◽  
Danyang Zhang ◽  
Minhan Zhou ◽  
Fuhao Song ◽  
Lin Liu ◽  
...  
Energy ◽  
2022 ◽  
pp. 123115
Author(s):  
Fang Liu ◽  
Qiu Mo ◽  
Yongwen Yang ◽  
Pai Li ◽  
Shuai Wang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 226 ◽  
Author(s):  
Woong Ko ◽  
Jinho Kim

Integrated energy systems can provide a more efficient supply than individual systems by using resources such as cogeneration. To foster efficient management of these systems, the flexible operation of cogeneration resources should be considered for the generation expansion planning model to satisfy the varying demand of energy including heat and electricity, which are interdependent and present different seasonal characteristics. We propose an optimization model of the generation expansion planning for an integrated energy system considering the feasible operation region and efficiency of a combined heat and power (CHP) resource. The proposed model is formulated as a mixed integer linear programming problem to minimize the sum of the annualized cost of the integrated energy system. Then, we set linear constraints of energy resources and describe linearized constraints of a feasible operation region and a generation efficiency of the CHP resource for application to the problem. The effectiveness of the proposed optimization problem is verified through a case study comparing with results of a conventional optimization model that uses constant heat-to-power ratio and generation efficiency of the CHP resource. Furthermore, we evaluate planning schedules and total generation efficiency profiles of the CHP resource for the compared optimization models.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3831 ◽  
Author(s):  
Zhou ◽  
Zheng ◽  
Liu ◽  
Liu ◽  
Mei ◽  
...  

Multi-district integrated energy system (IES) can make full use of the complementary characteristics of district power and thermal system, and loads in different districts. It can improve the flexibility and economy of system operation, which has a good development prospect. Firstly, based on the general energy transfer model of the district heating network (DHN), the DHN system is described by the basic equations of the heating network and nodes considering the characteristics of the transmission time delay and heat loss in pipelines. A coupling model of DHN and multi-district IES is established. Secondly, the flexible demand response (FDR) model of electric and thermal loads is established. The load characteristics of each district in IES are studied. A shiftable load model based on the electric quantity balance is constructed. Considering the flexibility of the heat demand, a thermal load adjustment model based on the comfort constraint is constructed to make the thermal load elastic and controllable in time and space. Finally, a mixed integer linear programming (MILP) model for operation optimization of multi-district IES with the DHN considering the FDR of electric and thermal loads is established based on the supply and demand sides. The result shows that the proposed model makes full use of the complementary characteristics of electric and thermal loads in different districts. It realizes the coordinated distribution of thermal energy among different districts and improves the efficiency of thermal energy utilization through the DHN. FDR effectively reduces the peak-valley difference of loads. It further reduces the total operating cost by the coordinated operation of the DHN and multi-district IES.


Sign in / Sign up

Export Citation Format

Share Document