Model selection in Bayesian framework to identify the best WorldView-2 based vegetation index in predicting green biomass of salt marshes in the northern Gulf of Mexico

2018 ◽  
Vol 55 (6) ◽  
pp. 880-904
Author(s):  
Wei Wu ◽  
Matthew Bethel ◽  
Deepak R. Mishra ◽  
Tyler Hardy
2009 ◽  
Vol 2 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Fugui Wang ◽  
Eurico J. D’Sa

Frequent hurricane landfalls along the northern Gulf of Mexico, in addition to causing immediate damage to vegetation, also have long term effects on coastal ecosystem structure and function. This study investigated the utility of using time series enhanced vegetation index (EVI) imagery composited in MODIS product MOD13Q1 for assessing hurricane damage to vegetation and its recovery. Vegetation in four US coastal states disturbed by five hurricanes between 2002 and 2008 were explored by change imagery derived from pre- and post-hurricane EVI data. Interpretation of the EVI changes within months and between years distinguished a clear disturbance pattern caused by Hurricanes Katrina and Rita in 2005, and a recovering trend of the vegetation between 2005 and 2008, particularly within the 100 km coastal zone. However, for Hurricanes Gustav, Ike, and Lili, the disturbance pattern which varied by the change imagery were not noticeable in some images due to lighter vegetation damage. The EVI pre- and post-hurricane differences between two adjacent years and around one month after hurricane disturbance provided the most likely damage area and patterns. The study also revealed that as hurricanes damaged vegetation in some coastal areas, strong precipitation associated with these storms may benefit growth of vegetation in other areas. Overall, the study illustrated that the MODIS product could be employed to detect severe hurricane damage to vegetation, monitor vegetation recovery dynamics, and assess benefits of hurricanes to vegetation.


2017 ◽  
Vol 41 (3) ◽  
pp. 765-771 ◽  
Author(s):  
Diana I. Montemayor ◽  
Eric L. Sparks ◽  
Oscar O. Iribarne ◽  
Just Cebrian

Author(s):  
Philine S. E. zu Ermgassen ◽  
Bryan DeAngelis ◽  
Jonathan R. Gair ◽  
Sophus zu Ermgassen ◽  
Ronald Baker ◽  
...  

AbstractSeagrasses, oyster reefs, and salt marshes are critical coastal habitats that support high densities of juvenile fish and invertebrates. Yet which species are enhanced through these nursery habitats, and to what degree, remains largely unquantified. Densities of young-of-year fish and invertebrates in seagrasses, oyster reefs, and salt marsh edges as well as in paired adjacent unstructured habitats of the northern Gulf of Mexico were compiled. Species consistently found at higher densities in the structured habitats were identified, and species-specific growth and mortality models were applied to derive production enhancement estimates arising from this enhanced density. Enhancement levels for fish and invertebrate production were similar for seagrass (1370 [SD 317] g m–2 y–1for 25 enhanced species) and salt marsh edge habitats (1222 [SD 190] g m–2 y–1, 25 spp.), whereas oyster reefs produced ~650 [SD 114] g m–2 y–1(20 spp). This difference was partly due to lower densities of juvenile blue crab (Callinectes sapidus) on oyster reefs, although only oyster reefs enhanced commercially valuable stone crabs (Menippe spp.). The production estimates were applied to Galveston Bay, Texas, and Pensacola Bay, Florida, for species known to recruit consistently in those embayments. These case studies illustrated variability in production enhancement by coastal habitats within the northern Gulf of Mexico. Quantitative estimates of production enhancement within specific embayments can be used to quantify the role of essential fish habitat, inform management decisions, and communicate the value of habitat protection and restoration.


2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document