scholarly journals Estimating and Applying Fish and Invertebrate Density and Production Enhancement from Seagrass, Salt Marsh Edge, and Oyster Reef Nursery Habitats in the Gulf of Mexico

Author(s):  
Philine S. E. zu Ermgassen ◽  
Bryan DeAngelis ◽  
Jonathan R. Gair ◽  
Sophus zu Ermgassen ◽  
Ronald Baker ◽  
...  

AbstractSeagrasses, oyster reefs, and salt marshes are critical coastal habitats that support high densities of juvenile fish and invertebrates. Yet which species are enhanced through these nursery habitats, and to what degree, remains largely unquantified. Densities of young-of-year fish and invertebrates in seagrasses, oyster reefs, and salt marsh edges as well as in paired adjacent unstructured habitats of the northern Gulf of Mexico were compiled. Species consistently found at higher densities in the structured habitats were identified, and species-specific growth and mortality models were applied to derive production enhancement estimates arising from this enhanced density. Enhancement levels for fish and invertebrate production were similar for seagrass (1370 [SD 317] g m–2 y–1for 25 enhanced species) and salt marsh edge habitats (1222 [SD 190] g m–2 y–1, 25 spp.), whereas oyster reefs produced ~650 [SD 114] g m–2 y–1(20 spp). This difference was partly due to lower densities of juvenile blue crab (Callinectes sapidus) on oyster reefs, although only oyster reefs enhanced commercially valuable stone crabs (Menippe spp.). The production estimates were applied to Galveston Bay, Texas, and Pensacola Bay, Florida, for species known to recruit consistently in those embayments. These case studies illustrated variability in production enhancement by coastal habitats within the northern Gulf of Mexico. Quantitative estimates of production enhancement within specific embayments can be used to quantify the role of essential fish habitat, inform management decisions, and communicate the value of habitat protection and restoration.

2019 ◽  
Vol 43 (7) ◽  
pp. 1722-1745 ◽  
Author(s):  
Terill A. Hollweg ◽  
Mary C. Christman ◽  
Just Cebrian ◽  
Bryan P. Wallace ◽  
Scott L. Friedman ◽  
...  

Abstract Estuaries in the northern Gulf of Mexico (GOM) provide habitat for many ecologically, commercially, and recreationally important fish and crustacean species (i.e., nekton), but patterns of nekton abundance and community assemblages across habitat types, salinity zones, and seasons have not been described region-wide. Recognizing the wealth of information collected from previous and ongoing field sampling efforts, we developed a meta-analytical approach to aggregate nekton density data from separate studies (using different gear types) that can be used to answer key research questions. We then applied this meta-analytical approach to separate nekton datasets from studies conducted in the Gulf of Mexico to summarize patterns in nekton density across and within several estuarine habitat types, including marsh, oyster reefs, submerged aquatic vegetation (SAV), and open-water non-vegetated bottom (NVB). The results of the meta-analysis highlighted several important patterns of nekton use associated with these habitat types. Nekton densities were higher in structured estuarine habitats (i.e., marsh, oyster reefs, SAV) than in open-water NVB habitat. Marsh and SAV community assemblages were relatively similar to each other, but different from those associated with open-water NVB and oyster habitats. Densities of commercially and recreationally important crustacean and fish species were highest in saline marshes, thus demonstrating the importance of this habitat in the northern GOM. The results of our meta-analysis are generally consistent with previous site-specific studies in the region (many of which were included in the meta-analysis) and provide further evidence for these patterns at a regional scale. This meta-analytical approach is easy to implement for diverse research and management purposes, and provides the opportunity to advance understanding of the value and role of coastal habitats to nekton communities.


2014 ◽  
Vol 37 (5) ◽  
pp. 1295-1300 ◽  
Author(s):  
T. Reid Nelson ◽  
Deionta Sutton ◽  
Dennis R. DeVries

2018 ◽  
Vol 43 (7) ◽  
pp. 1711-1721 ◽  
Author(s):  
Matthew S. Baumann ◽  
Gail F. Fricano ◽  
Katie Fedeli ◽  
Claire E. Schlemme ◽  
Mary C. Christman ◽  
...  

Abstract Recovery following salt marsh restoration in the northern Gulf of Mexico is investigated using meta-analysis for two salt marsh indicator invertebrates, the periwinkle snail (Littoraria irrorata) and amphipod crustaceans (Amphipoda). These invertebrates serve key marsh ecosystem functions including facilitating nutrient cycling and serving as prey for larger ecologically and economically important species. Recovery of periwinkles in restored marshes compared to reference sites is quantified by progression in population density and, because the species is long-lived (~ 10 years), in terms of biomass added per unit area each year following restoration. Amphipods are shorter-lived with high annual turnover; thus, recovery through time is estimated by the density of individuals rather than by biomass. The results of the analyses indicate progressive periwinkle recovery to equivalence with reference systems by year 4 in terms of density and year 6 with respect to annual biomass addition, while amphipod densities do not fully recover in the first 20 years following restoration. Although periwinkle recovery in terms of annual biomass addition reaches equivalence by year 6, the development of an age class structure characteristic of reference marshes would likely take longer because of the relatively long lifespan for this species. In addition to providing insight into the benefits of salt marsh restoration in the northern Gulf of Mexico, the approach described can be applied more generally to restoration scaling in a natural resource damage assessment context.


Author(s):  
Helen Brooks ◽  
Iris Möller ◽  
Tom Spencer ◽  
Kate Royse ◽  
Simon James Price

Salt marshes and, to a lesser extent, tidal flats, attenuate incoming hydrodynamic energy, thus reducing flood and erosion risk in the coastal hinterland. However, marshes are declining both globally and regionally (the Northwest European region). Salt marsh resistance to incoming hydrodynamic forcing depends on marsh biological, geochemical and geotechnical properties. However, there currently exists no systematic study of marsh geotechnical properties and how these may impact both marsh edge and marsh surface erosion processes (e.g. surface removal, cliff undercutting, gravitational slumping). This has led to poor parameterization of marsh evolution models. Here, we present a systematic study of salt marsh and tidal flat geotechnical properties (shear strength, bulk density, compressibility, plasticity and particle size) at Tillingham, Essex, UK.


<em>Abstract</em> .—The importance of coastal wetlands to a large number of commercially important marine fish species for spawning, nursery, and foraging habitat is a commonly held belief. Few studies to substantiate this belief have been conducted in the northeastern United States. This paper examines in detail the life histories and habitat requirements of three species of fish commonly found in salt marshes in the northeastern United States. The results indicate that valuable commercial and recreational species of fish and their prey require coastal wetlands as habitat during their life cycles in New England. Coastal wetland restoration projects will increase the abundance of wetland habitat types required by commercial and recreational species of marine fish. The restoration of the salt marsh within the Galilee Bird Sanctuary in Narragansett, Rhode Island is used as case study. When enhancement of fishery habitat value is a goal of a restoration project, the project should incorporate certain design features. However, the designers of many salt-marsh restoration projects assume that reestablishment of salt-marsh vegetation will result in recolonization by other species of animals.


2020 ◽  
Vol 43 (7) ◽  
pp. 1680-1691
Author(s):  
Melissa Vernon Carle ◽  
Kristopher G. Benson ◽  
James F. Reinhardt

Abstract This collection of papers provides insights into methods and data currently available to quantify the benefits associated with estuarine habitat restoration projects in the northern Gulf of Mexico, USA, with potential applicability to other coastal systems. Extensive habitat restoration is expected to occur in the northern Gulf of Mexico region over the next several decades through funding associated with the 2010 Deepwater Horizon oil spill. Papers in this section examine the development of vegetation, soil properties, invertebrate fauna, and nekton communities in restored coastal marshes and provide a conceptual framework for applying these findings to quantify the benefits associated with compensatory marsh restoration. Extensive meta-analysis of existing data for Gulf of Mexico coastal habitats further confirms that structured habitats such as marsh, submerged aquatic vegetation, and oyster reefs support greater nekton densities than nonvegetated bottom habitat, with oyster reefs supporting different species assemblages than marsh and submerged aquatic vegetation. Other papers demonstrate that while vegetation cover can establish rapidly within the first 5 years of restoration, belowground parameters such as root biomass and soil organic matter remain 44% to 92% lower at restored marshes than reference marshes 15 years after restoration. On average, amphipod and nekton densities are also not fully restored until at least 20 and 13 years following restoration, respectively. Additional papers present methods to estimate the benefits associated with marsh restoration projects, nekton productivity associated with coastal and estuarine habitats, and the benefits associated with the removal of derelict crab traps in Gulf of Mexico estuaries.


Sign in / Sign up

Export Citation Format

Share Document