Performance and emission characteristics of waste frying oil biodiesel blends as pilot fuel on a dual fuel compression ignition engine

Author(s):  
Zafer Aydin ◽  
Aykut Safa
Author(s):  
Adeyinka Sikiru Yusuff ◽  
Olalekan David Adeniyi ◽  
Moses Aderemi Olutoye ◽  
Uduak George Akpan

Direct use of vegetable oil as a fuel on compression ignition engine has been described as impossible, because of its high viscosity and density. Transesterification process and other methods have been identified as ways of reducing these two properties. The high cost of virgin vegetable oils and its competition for food have made the biodiesel unable to compete with fossil diesel and also hike its cost. In order to solve these menaces, in this study, waste frying oil was used as a feedstock for production of biodiesel via transesterification using anthill-eggshell promoted Ni-Co mixed oxides (NiCoAE) as heterogeneous catalyst. The composite catalyst was prepared via incipient wetness impregnation (IWI) method and thermally treated at 1000 °C for 4 h. The developed catalyst was characterized using FTIR and SEM techniques. The biodiesel produced under the favourable reaction conditions was blended with petroleum diesel in three different proportions (B20, B50 and B80) and were tested on diesel engine to evaluate their performance and emission characteristics. The blended fuel containing 20% by volume biodiesel (B20) emitted lowest percentage of CO and CO2. The result obtained herein indicates that the mixture of biodiesel and petroleum diesel containing 20% biodiesel (B20) emitted less carbon monoxide (CO) and carbon dioxide (CO2), thus, indicating best dual fuel combination, which can be used in diesel engines without any adjustment or modification in the engines. This result is in agreement with the findings reported in the literature and Energy Policy Act (EPA) of 1992.


Author(s):  
N. Kapilan ◽  
R. P. Reddy ◽  
P. Mohanan

The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalation in the petroleum prices, have stimulated the search for alternatives to petroleum based fuels specially diesel and gasoline. Biodiesel is one of the renewable fuels, which will be the good replacement to diesel. But as a sole fuel, it gives poor performance and higher emissions. From the literature survey, it is observed that not much work has been done to use Methyl Ester (ME) of coconut oil as liquid fuel in sole and dual fuel mode of operation. Hence, in the present work, ME of coconut oil is chosen as a sole fuel to run the diesel engine and an alternative pilot fuel to run LPG-Biodiesel dual fuel engine. In dual fuel mode operation, LPG is used as the inducted gaseous fuel. LPG has been chosen as the inducted fuel on account of its easy availability in abundance in the present time. The existing compression ignition diesel engine was modified to work on dual fuel mode. Tests were carried out on a single cylinder, four strokes, water-cooled, direct injection, compression ignition engine using ME of coconut oil as fuel. To study the effect of injection timing, its is advanced and retarded from the standard injection timing recommended for diesel operation. From the results, it is observed that the advanced injection timing results in better performance and lower emissions of the diesel engine. In dual fuel mode operation, first the engine was started with ME of coconut oil as fuel and then the LPG flow rate was increased. With appropriate proportions of the injected (0.45, 0.65 and 0.75 kg/hr) and inducted fuels it is possible to improve the engine performance and reduce its emissions. From the experimental results, it is found that the pilot fuel rate of 0.65 kg/hr is preferred from the point view of brake thermal efficiency, fuel consumption and smooth running. ME of coconut oil were successfully used as sole fuel and pilot fuel. The performance and emission of the engine in sole fuel mode with better injection timing and dual fuel mode with better pilot quantity were compared. From the comparison, it is observed that the ME of coconut oil can be used as pilot fuel in dual fuel engine compared to sole fuel with regard to performance and emissions.


Sign in / Sign up

Export Citation Format

Share Document