Modeling and experimental investigation of a bistable vibration energy harvester based on polyvinylidene fluoride (PVDF) film

Author(s):  
Jiantao Zhang ◽  
Xiangfu Yu ◽  
Yiwen Ning ◽  
Wei Zhao ◽  
Dong Qu
2019 ◽  
Vol 30 (7) ◽  
pp. 1094-1104 ◽  
Author(s):  
Peihong Wang ◽  
Xing Liu ◽  
Haibo Zhao ◽  
Wen Zhang ◽  
Xiaozhou Zhang ◽  
...  

Piezoelectric vibration energy harvesters have attracted much attention in the last decades due to their great potential application in powering various ultra-low-power sensors/actuators in the ambient environment. Many works have been presented to improve the energy conversion efficiency and broaden the operating bandwidth. One purpose of these studies is to harvest vibration energy with a specific excitation direction. However, a vibration source in a practical environment may from different directions. In this article, a piezoelectric vibration energy harvester with the radially distributed piezoelectric array is proposed to scavenge two-dimensional vibration energy. Meanwhile, we introduce a new concept, named angle bandwidth, to describe the ability of harvesting two-dimensional vibration energy. The theoretical analysis and the simulation results indicate that this harvester can scavenge vibration energy with arbitrary in-plane directions using the arc-shaped radially distributed piezoelectric array on a flexible cylinder. The experimental results show that this new design has large angle bandwidth, and the angle bandwidth increases from 87.5° to 106.3° when increasing the number of polyvinylidene fluoride elements from one to four. Also, the angle bandwidth of piezoelectric array in series is always larger than that in parallel. Overall, the present two-dimensional piezoelectric vibration energy harvester has the potential for a higher multi-directional vibration energy harvesting efficiency than a traditional cantilever-shaped piezoelectric vibration energy harvester. It also can be used as a self-powered vibration direction sensor.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2018 ◽  
Vol 138 (5) ◽  
pp. 185-190
Author(s):  
Meng Su ◽  
Dai Kobayashi ◽  
Nobuyuki Takama ◽  
Beomjoon Kim

2021 ◽  
Vol 30 (2) ◽  
pp. 299-308
Author(s):  
Anxin Luo ◽  
Yulong Zhang ◽  
Xinge Guo ◽  
Yan Lu ◽  
Chengkuo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document