Study of Hydraulic Gradient and Velocity Changes of Unsteady Flow through Coarse Porous Media

Author(s):  
Mohsen Safarian ◽  
Hadi Norouzi ◽  
Jalal Bazargan
Author(s):  
William G. Gray ◽  
Michael A. Celia

The mathematical study of flow in porous media is typically based on the 1856 empirical result of Henri Darcy. This result, known as Darcy’s law, states that the velocity of a single-phase flow through a porous medium is proportional to the hydraulic gradient. The publication of Darcy’s work has been referred to as “the birth of groundwater hydrology as a quantitative science” (Freeze and Cherry, 1979). Although Darcy’s original equation was found to be valid for slow, steady, one-dimensional, single-phase flow through a homogeneous and isotropic sand, it has been applied in the succeeding 140 years to complex transient flows that involve multiple phases in heterogeneous media. To attain this generality, a modification has been made to the original formula, such that the constant of proportionality between flow and hydraulic gradient is allowed to be a spatially varying function of the system properties. The extended version of Darcy’s law is expressed in the following form: qα=-Kα . Jα (2.1) where qα is the volumetric flow rate per unit area vector of the α-phase fluid, Kα is the hydraulic conductivity tensor of the α-phase and is a function of the viscosity and saturation of the α-phase and of the solid matrix, and Jα is the vector hydraulic gradient that drives the flow. The quantities Jα and Kα account for pressure and gravitational effects as well as the interactions that occur between adjacent phases. Although this generalization is occasionally criticized for its shortcomings, equation (2.1) is considered today to be a fundamental principle in analysis of porous media flows (e.g., McWhorter and Sunada, 1977). If, indeed, Darcy’s experimental result is the birth of quantitative hydrology, a need still remains to build quantitative analysis of porous media flow on a strong theoretical foundation. The problem of unsaturated flow of water has been attacked using experimental and theoretical tools since the early part of this century. Sposito (1986) attributes the beginnings of the study of soil water flow as a subdiscipline of physics to the fundamental work of Buckingham (1907), which uses a saturation-dependent hydraulic conductivity and a capillary potential for the hydraulic gradient.


2021 ◽  
Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan ◽  
Faezah Azhang ◽  
Rana Nasiri

Abstract The study of the steady and unsteady flow through porous media and the interactions between fluids and particles is of utmost importance. In the present study, binomial and trinomial equations to calculate the changes in hydraulic gradient (i) in terms of flow velocity (V) were studied in the steady and unsteady flow conditions, respectively. According to previous studies, the calculation of drag coefficient (Cd) and consequently, drag force (Fd) is a function of coefficient of friction (f). Using Darcy-Weisbach equations in pipes, the hydraulic gradient equations in terms of flow velocity in the steady and unsteady flow conditions, and the analytical equations proposed by Ahmed and Sunada in calculation of the coefficients a and b of the binomial equation and the friction coefficient (f) equation in terms of the Reynolds number (Re) in the porous media, equations were presented for calculation of the friction coefficient in terms of the Reynolds number in the steady and unsteady flow conditions in 1D (one-dimensional) confined porous media. Comparison of experimental results with the results of the proposed equation in estimation of the drag coefficient in the present study confirmed the high accuracy and efficiency of the equations. The mean relative error (MRE) between the computational (using the proposed equations in the present study) and observational (direct use of experimental data) friction coefficient for small, medium and large grading in the steady flow conditions was equal to 1.913, 3.614 and 3.322%, respectively. In the unsteady flow condition, the corresponding values of 7.806, 14.106 and 10.506 % were obtained, respectively.


2018 ◽  
Vol 22 (5) ◽  
pp. 1955-1962
Author(s):  
Tomoki Izumi ◽  
Junya Mizuta

A numerical model for non-Darcy flow, which occurs when water moves through coarse porous media under high Reynolds number, is developed. The governing equation for incompressible viscous flow through porous media is composed of a continuity equation and a momentum equation, which is the Navier-Stokes equation with an additional non-linear resistance term based on Forchheimer?s law. For the discretization scheme, moving particle simulation method is employed. In order to assess the model validity, seepage experiments in different kinds of coarse porous media are implemented, and then reproducibility of the numerical results is examined. From the results, it is found that the computational flow velocities at middle part of porous media are in good agreement with experimental ones while velocities at outflow end are overestimated.


2021 ◽  
Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan ◽  
Faezah Azhang ◽  
Rana Nasiri

Abstract The study of the steady and unsteady flow through porous media and the interactions between fluids and particles is of utmost importance. In the present study, binomial and trinomial equations to calculate the changes in hydraulic gradient (i) in terms of flow velocity (V) were studied in the steady and unsteady flow conditions, respectively. According to previous studies, the calculation of drag coefficient (Cd) and consequently, drag force (Fd) is a function of coefficient of friction (f). Using Darcy-Weisbach equations in pipes, the hydraulic gradient equations in terms of flow velocity in the steady and unsteady flow conditions, and the analytical equations proposed by Ahmed and Sunada in calculation of the coefficients a and b of the binomial equation and the friction coefficient (f) equation in terms of the Reynolds number (Re) in the porous media, equations were presented for calculation of the friction coefficient in terms of the Reynolds number in the steady and unsteady flow conditions in 1D (one-dimensional) confined porous media. Comparison of experimental results with the results of the proposed equation in estimation of the drag coefficient in the present study confirmed the high accuracy and efficiency of the equations. The mean relative error (MRE) between the computational (using the proposed equations in the present study) and observational (direct use of experimental data) friction coefficient for small, medium and large grading in the steady flow conditions was equal to 1.913, 3.614 and 3.322%, respectively. In the unsteady flow condition, the corresponding values of 7.806, 14.106 and 10.506 % were obtained, respectively.


Sign in / Sign up

Export Citation Format

Share Document