Time-dependent seismic fragility curves for aging jacket-type offshore platforms subjected to earthquake ground motions

2017 ◽  
Vol 14 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Ali Akbar Jahanitabar ◽  
Khosro Bargi

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2020 ◽  
pp. 136943322095681
Author(s):  
Fengkun Cui ◽  
Huihui Li ◽  
Xu Dong ◽  
Baoqun Wang ◽  
Jin Li ◽  
...  

RC bridge substructures exposed to chloride environments inevitably suffer from corrosion of reinforcement embodied in concrete. This deterioration issue leads to the loss of reinforcement areas and a reduction in seismic capacity of reinforced concrete (RC) bridge substructures. To quantify the effect of steel corrosion on seismic fragility estimates, this paper proposes an improved time-dependent seismic fragility framework by taking into account the increase in the corrosion rate after concrete cracking and the reduction in seismic capacity of RC bridge substructures during the service life. Additionally, an analytical method based on a back propagation artificial neural network (BP-ANN) is proposed to provide probabilistic capacity estimates of deteriorating RC substructures. A three-span T-shaped girder bridge is selected as a case study bridge to provide improved time-dependent seismic fragility estimates that consider uncertainties in the material properties, geometric parameters, deterioration process and ground motions. The obtained fragility curves show that there is a nonlinear increase in the exceedance probability of deteriorating RC bridge substructures for different damage states during the service life. In addition, time-dependent seismic fragility analysis shows that the cases of considering only the effect of an increase in seismic demand or the reduction in seismic capacity as well as neither of them may lead to a significant underestimation of the seismic vulnerability of deteriorating RC bridge substructures.


2017 ◽  
Vol 33 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Xin Chu ◽  
James M. Ricles ◽  
Shamim N. Pakzad

This paper presents the seismic fragility assessment of the Smithsonian Institute Museum Support Center (MSC), which sustained appreciable damage during the 2011 Virginia earthquake. A three-dimensional (3-D) finite element model (FEM) for the building was created and validated using measured dynamic characteristics determined from field vibration test data. Two suites of bidirectional ground motions at different hazard levels were applied to the FEM to generate fragility curves for structural as well as nonstructural (storage cabinets) damage. The effect of brace yielding strength on structural and nonstructural damage is also investigated to provide recommendations for future retrofit. The fragility curves show that the spectral acceleration to cause structural damage to the building is not high. Due to low seismicity, however, the probability for the structure to be damaged at the design basis earthquake is small. Nevertheless, the probability for nonstructural damage is considerable, which is an important issue related to the seismic performance of the building.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fa Che ◽  
Chao Yin ◽  
Jilei Zhou ◽  
Zhinan Hu ◽  
Xingkui Zhao ◽  
...  

Uncertainties of the ground motions and structural parameters are the main factors that limit the accuracy of embankment seismic fragility assessment. In response to the uncertainties of the ground motions, artificial synthesizing method of the near-fault pulse-like ground motions was proposed, and 15 ground motions with the rupture fault distances ranging from 1 to 15 km were synthesized by taking the Chi-Chi earthquake in Taiwan, China, as an example. The Xi’an-Baoji expressway K1125 + 470 embankment was taken as the research object, and a total of 12 structural parameters were selected as the design variables, namely, the elastic modulus, bulk modulus, shear modulus, density, cohesion force, and internal friction angle of the embankment fill and soil foundation, respectively. In response to the uncertainties of these parameters, 3 principal components with large impacts on the embankment seismic fragility were extracted based on the principal component analysis. Mapping relationships among the principal components and embankment seismic damages were analyzed using the uniform design response surface method, and the seismic fragility assessment was carried out and the fragility curves were plotted. The research results are consistent with the actual embankment seismic damage conditions of the Chi-Chi earthquake, indicating that the proposed method is scientific and reasonable. It also shows that it would obviously overestimate the seismic performance in the embankment seismic fragility assessment without considering the uncertainties of the ground motions and structural parameters.


2019 ◽  
Vol 30 (1) ◽  
pp. 74-85
Author(s):  
Abdelhamid Hebbouche ◽  
Mahmoud Bensaibi ◽  
Hussein Mroueh ◽  
Mohamed Draidi Bensalah

Author(s):  
M. Inagaki ◽  
K. Suzuki ◽  
H. Abe

In 2002FY the program of seismic fragility capacity test of PWR and BWR control rod insertion systems was initiated with the following objectives: • To examine the functional fragility of PWR and BWR control rod insertion systems using actual size mockup specimens for strong earthquake ground motions exceeding the design levels induced by the large shaking table. • To develop methodology of fragility evaluation and to establish fragility database of PWR and BWR control rod insertion systems. This paper is a report on an overview of the test program.


Sign in / Sign up

Export Citation Format

Share Document