scholarly journals Embankment Seismic Fragility Assessment under the Near-Fault Pulse-like Ground Motions by Applying the Response Surface Method

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fa Che ◽  
Chao Yin ◽  
Jilei Zhou ◽  
Zhinan Hu ◽  
Xingkui Zhao ◽  
...  

Uncertainties of the ground motions and structural parameters are the main factors that limit the accuracy of embankment seismic fragility assessment. In response to the uncertainties of the ground motions, artificial synthesizing method of the near-fault pulse-like ground motions was proposed, and 15 ground motions with the rupture fault distances ranging from 1 to 15 km were synthesized by taking the Chi-Chi earthquake in Taiwan, China, as an example. The Xi’an-Baoji expressway K1125 + 470 embankment was taken as the research object, and a total of 12 structural parameters were selected as the design variables, namely, the elastic modulus, bulk modulus, shear modulus, density, cohesion force, and internal friction angle of the embankment fill and soil foundation, respectively. In response to the uncertainties of these parameters, 3 principal components with large impacts on the embankment seismic fragility were extracted based on the principal component analysis. Mapping relationships among the principal components and embankment seismic damages were analyzed using the uniform design response surface method, and the seismic fragility assessment was carried out and the fragility curves were plotted. The research results are consistent with the actual embankment seismic damage conditions of the Chi-Chi earthquake, indicating that the proposed method is scientific and reasonable. It also shows that it would obviously overestimate the seismic performance in the embankment seismic fragility assessment without considering the uncertainties of the ground motions and structural parameters.

2016 ◽  
Vol 106 (12) ◽  
pp. 160-167 ◽  
Author(s):  
Huihui LI ◽  
Yudong WANG ◽  
Lifeng LI ◽  
Sicong HU ◽  
Wenpeng WU ◽  
...  

2013 ◽  
Vol 712-715 ◽  
pp. 1506-1509 ◽  
Author(s):  
Guang Bo Li ◽  
Guang Wei Meng ◽  
Feng Li ◽  
Li Ming Zhou

The response surface method is adopted to analyze the structural reliability. This paper presents a new response surface method with the uniform design method to predict the failure probability of structures. It is the response surface method based on Fourier orthogonal basis function (RSM-Fourier). To reduce computational costs in structural reliability analysis, approximate Fourier response surface functions for reliability assessment have been suggested. The method involves the selection of training datasets for establishing a model by the uniform design points, the approximation of the limit state function by the trained model and the estimation of the failure probability using first-order reliability method (FORM). The proposed method is applied to examples, compared with other methods to demonstrate its effectiveness.


Author(s):  
Mohammad Amin Bayari ◽  
Naser Shabakhty ◽  
Esmaeel Izadi Zaman Abadi

Structural collapse performance assessment has been at the center of many researchers’ interest due to complications of this phenomenon and uncertainties involved in modeling the simulation of the structural collapse response. This research aims to predict the structural collapse responses including mean collapse capacity, collapse standard deviation, and collapse drift by considering modeling uncertainties and then estimating collapse fragility curves, collapse risk, and reliability using Response Surface Method (RSM) and Artificial Neural Network (ANN). Modeling uncertainties for evaluating collapse responses are the parameters of the modified Ibarra-Krawinkler moment-rotation curve. Moreover, to analyze the structural uncertainty, the correlation between the model parameters in one component and between two structural components was considered. The Latin Hypercube Sampling (LHS) method and Cholesky decomposition were used to produce independent and dependent random variables, respectively. To predict the collapse responses of the structure, taking into account the uncertainties, as the number of uncertainties increases, the number of simulations for the uncertainties also increases, leading to a significant increase in the computational effort to estimate the structural responses, in the presence of a limited number of samples for uncertainties, a hybrid of ANN with PSO algorithm was used to reduce the computational effort in order to estimate the collapse fragility curves, collapse risk, and structural reliability. The results show that structural collapse responses can be predicted with appropriate accuracy by producing a limited number of samples for uncertainties and using an ANN-PSO algorithm.


2012 ◽  
Vol 236-237 ◽  
pp. 611-616
Author(s):  
Han Bing Liu ◽  
Yan Jun Song ◽  
Ya Feng Gong

The establishment of an effective finite element model for bridge structure is essential in the health monitoring system for Bridge. A new updating method for static model using response surface method is proposed in this paper, and the main procedures are given with an example of a special-shaped bridge. Firstly, the bridge deflection and strain data in designed load case are obtained. Several groups of combined parameters which are chosen based on the principle of uniform design method are selected to conduct calculation through finite element software. Finally through response surface fitting and optimization, the updated bridge finite element model is obtained. The results show that the updated model is approximate to the real bridge and this updating method is rational and practical.


2013 ◽  
Vol 385-386 ◽  
pp. 141-145
Author(s):  
Wen Ping Li ◽  
Ya Peng Wu ◽  
Ji Yan Liu ◽  
Xin Jun Li ◽  
Zhong Wang ◽  
...  

Rear sub-frame is one of the important parts of automobile chassis. Tube hydroforming (THF) is a kind of the advanced manufacturing technology to produce the sub-frame. The success of a THF process is highly dependent on the loading paths (axial feed versus pressure) used. The uniform design method combined with the response surface method was used to optimize the loading path in this paper. The results obtained by numerical simulation demonstrated that product quality is good in the optimized loading path.


2011 ◽  
Vol 368-373 ◽  
pp. 665-672
Author(s):  
Su Fen Huang ◽  
Zhi Gang Song ◽  
Bin Li

Existing safety study of building fire is mainly based on the ISO834 temperature-time curve, which is a theoretical curve and not fully reflect the influencing factors of fire such as the distribution of fuel and ventilation of the building. Secondly, the reliability analysis of building fire lacks explicit limit state function, especially when the reliability calculation considers the internal force redistribution of the structure. Direct Monte Carlo simulation has no requirement of explicit limit state function, but it needs huge calculation efforts. To solve these two problems, the response surface method is proposed from the view point of numerical simulation and experiment design. Using the fire modeling software CFAST the actual result of temperature and thickness of smoke layer can be obtained. On this basis, the reliability index can be calculated with the response surface method,which can solve the problem of lacking explicit limit state function by regressing multi-variable function based on the inputs and outputs. Uniform design (UD) method can allocate more parameters without greatly increasing the calculation efforts. Using a case the calculation process is explained with. The results show that this method can quickly obtain the reliability index in the premise of less calculation.


Sign in / Sign up

Export Citation Format

Share Document