Stochastic dynamic transient gusty wind effect on the sliding and overturning of quayside container cranes

Author(s):  
Ning Su ◽  
Shitao Peng ◽  
Ningning Hong
Author(s):  
Dylan D. Chase ◽  
Kourosh Danai ◽  
Mathew A. Lackner ◽  
James F. Manwell

Wind turbines operate in the atmospheric boundary layer and are subject to complex random loading. This precludes using a deterministic response of healthy turbines as the baseline for identifying the effect of damage on the measured response of operating turbines. In the absence of such a deterministic response, the stochastic dynamic response of the tower to a shutdown maneuver is found to be affected distinctively by damage in contrast to wind. Such a dynamic response, however, cannot be established for the blades. As an alternative, the estimate of blade damage is sought through its effect on the third or fourth modal frequency, each found to be mostly unaffected by wind. To discern the effect of damage from the wind effect on these responses, a unied method of damage detection is introduced that accommodates different responses. In this method, the dynamic responses are transformed to surfaces via continuous wavelet transforms to accentuate the effect of wind or damage on the dynamic response. Regions of signicant deviations between these surfaces are then isolated in their corresponding planes to capture the change signatures. The image distances between these change signatures are shown to produce consistent estimates of damage for both the tower and the blades in presence of varying wind eld proles.


2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 237
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

To design energy-efficient buildings, energy assessment programs need to be developed for determining the inside air temperature, so that thermal comfort of the occupant can be sustained. The internal temperatures could be calculated through computational fluid dynamics (CFD) analysis; however, miniscule time steps (seconds and milliseconds) are used by a long-term simulation (i.e., weeks, months) that require excessive time for computing wind effects results even for high-performance personal computers. This paper examines a new method, wherein the wind effect surrounding the buildings is integrated with the external air temperature to facilitate wind simulation in building analysis over long periods. This was done with the help of an equivalent temperature (known as Tnatural), where the convection heat loss is produced in an equal capacity by this air temperature and by the built-in wind effects. Subsequently, this new external air temperature Tnatural can be used to calculate the internal air temperature. Upon inclusion of wind effects, above 90% of the results were found to be within 0–3 °C of the perceived temperatures compared to the real data (99% for insulated cavity brick (InsCB), 91% for cavity brick (CB), 93% for insulated reverse brick veneer (InsRBV) and 94% for insulated brick veneer (InsBV) modules). However, a decline of 83–88% was observed in the results after ignoring the wind effects. Hence, the presence of wind effects holds greater importance in correct simulation of the thermal performance of the modules. Moreover, the simulation time will expectedly reduce to below 1% of the original simulation time.


Author(s):  
Donghyeon Han ◽  
Dongseok Im ◽  
Gwangtae Park ◽  
Youngwoo Kim ◽  
Seokchan Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document