scholarly journals Data assimilation in 2D viscous Burgers equation using a stabilized explicit finite difference scheme run backward in time

Author(s):  
Alfred S. Carasso
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Qiaojie Li ◽  
Zhoushun Zheng ◽  
Shuang Wang ◽  
Jiankang Liu

An explicit finite difference scheme for one-dimensional Burgers equation is derived from the lattice Boltzmann method. The system of the lattice Boltzmann equations for the distribution of the fictitious particles is rewritten as a three-level finite difference equation. The scheme is monotonic and satisfies maximum value principle; therefore, the stability is proved. Numerical solutions have been compared with the exact solutions reported in previous studies. TheL2, L∞and Root-Mean-Square (RMS) errors in the solutions show that the scheme is accurate and effective.


1990 ◽  
Vol 112 (4) ◽  
pp. 509-513 ◽  
Author(s):  
R. S. Paranjpe

The dynamic behavior of a distributed parameter valve spring with Coulomb damping has been modeled. Such a spring is described by a nonlinear, nonhomogeneous wave equation. This equation is solved using an explicit finite difference scheme. Some sample results are presented. The results of the finite difference scheme are compared with the results of an analytical solution for zero damping. The two compare very well. The spring is also modeled using an equivalent viscous damping coefficient. The results of this analysis are compared with those of the Coulomb damping analysis.


Sign in / Sign up

Export Citation Format

Share Document