scholarly journals Development of land use and main land use change processes in the period 1836–2006: case study in the Czech Republic

2012 ◽  
Vol 8 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Hana Skokanová ◽  
Marek Havlíček ◽  
Roman Borovec ◽  
Jaromír Demek ◽  
Renata Eremiášová ◽  
...  
2016 ◽  
Vol 8 (1) ◽  
pp. 39-49
Author(s):  
Krisztina Demény ◽  
Csaba Centeri ◽  
Dániel Szalai

Abstract The manuscript presents land-use change processes based on former military map analyses. Military maps were derived from the 1770s until the 1890s and later from the CORINE Land Cover map. I observed the transition direction of areal distribution of various land uses. Digitalized maps showed 19-20th century land-use conditions; besides them, we created a grouping system which is based on the intensity of land use. We distinguished six land-use types, ranking them according to the anthropogenic influence (1. built-up areas; 2. arable fields; 3. orchards and vineyards; 4. meadows and pastures; 5. forests; 6. wetlands).


2012 ◽  
Vol 17 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Chuanyan ZHOU ◽  
Xun CHEN ◽  
Xiaoling LIU ◽  
Weiquan ZHAO ◽  
Kun LI ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 5355
Author(s):  
Vilém Pechanec ◽  
Ondřej Cudlín ◽  
Miloš Zapletal ◽  
Jan Purkyt ◽  
Lenka Štěrbová ◽  
...  

Global and regional biodiversity loss is caused by several drivers including urban development, land use intensification, overexploitation of natural resources, environmental pollution, and climate change. The main aim of our study was to adapt the GLOBIO3 model to the conditions of the Czech Republic (CR) to assess loss of naturalness and biodiversity vulnerability at the habitat level on a detailed scale across the entire CR. An additional aim was to assess the main drivers affecting the biodiversity of habitat types. The GLOBIO3 model was adapted to CZ-GLOBIO by adapting global to local scales and using habitat quality and naturalness data instead of species occurrence data. The total mean species abundance (MSA) index of habitat quality, calculated from the spatial overlay of the four MSA indicators by our new equation, reached the value 0.62. The total value of MSA for natural and near-natural habitats was found to be affected mainly by infrastructure development and fragmentation. Simultaneously, intensity of land use change and atmospheric nitrogen deposition contributed primarily to the low total value of MSA for distant natural habitats. The CZ-GLOBIO model can be an important tool in political decision making to reduce the impact of the main drivers on habitat biodiversity in the CR.


Sign in / Sign up

Export Citation Format

Share Document