Reflection of P waves in porous thermoelastic medium with three-phase-lag model

Author(s):  
Siddhartha Biswas ◽  
S. M. Abo-Dahab
2017 ◽  
Vol 2 (1) ◽  
pp. 259-270 ◽  
Author(s):  
Sarhan Y. Atwa ◽  
M. K. Ammar ◽  
Eman Ibrahim

AbstractThis paper is concerned on the distribution of a homogeneous isotropic elastic medium with diffusion under the effect of Three-phase-lag model. Normal mode analysis is used to express the exact expressions for temperature, displacements and stresses functions. Comparisons are made in the absence and presence of diffusion with some theories like Three-phase-lag and GNIII.


2017 ◽  
Vol 13 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Samia M. Said

Purpose The purpose of this paper is to investigate the effect of a hydrostatic initial stress and the gravity field on a fiber-reinforced thermoelastic medium with an internal heat source that is moving with a constant speed. Design/methodology/approach A general model of the equations of the formulation in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. Findings The exact expressions for the displacement components, force stresses, and the thermal temperature for the thermal shock problem obtained by using normal mode analysis. Originality/value A comparison made between the results of the two models for different values of a hydrostatic initial stress as well as an internal heat source. Comparisons also made with the results of the two models in the absence and presence of the gravity field as well as the reinforcement.


2016 ◽  
Vol 32 (6) ◽  
pp. 665-671 ◽  
Author(s):  
R. Kumar ◽  
S. Devi

AbstractThe main objective of the present paper is to analyze the effects of phase-lag on thick circular plate with heat sources in modified couple stress thermoelastic medium. The mathematical formulation is prepared for three-phase-lag heat conduction model subjected to prescribed normal heat flux along with stress free boundary. Laplace and Hankel transforms are used to deal the problem. The displacements, stresses and temperature change are obtained in the transformed domain. Numerical inversion technique has been used to obtain the solutions in the physical domain. The results obtained numerically for these quantities are presented graphically. Some particular cases are also discussed in the present problem.


2020 ◽  
Vol 30 (12) ◽  
pp. 5191-5207 ◽  
Author(s):  
Aatef Hobiny ◽  
Faris S. Alzahrani ◽  
Ibrahim Abbas

Purpose The purposes of this study, a generalized model for thermoelastic wave under three-phase lag (TPL) model is used to compute the increment of temperature, the components of displacement, the changes in volume fraction field and the stress components in a two-dimension porous medium. Design/methodology/approach By using Laplace-Fourier transformations with the eigen values methodologies, the analytical solutions of all physical variables are obtained. Findings The derived methods are estimated with numerical outcomes which are applied to the porous media in simplified geometry. Originality/value Finally, the outcomes are represented graphically to display the difference among the models of the TPL and the Green and Naghdi (GNIII) with and without energy dissipations.


Sign in / Sign up

Export Citation Format

Share Document