scholarly journals Mechanical properties of Glued-laminated timber made up of mixed tropical wood species

Author(s):  
Cédrick Horphé Ndong Bidzo ◽  
Claude Feldman Pambou Nziengui ◽  
Samuel Ikogou ◽  
Beat Kaiser ◽  
Rostand Moutou Pitti
2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adriano Reis Prazeres Mascarenhas ◽  
Rafael Rodolfo de Melo ◽  
Alexandre Santos Pimenta ◽  
Diego Martins Stangerlin ◽  
Fernando Luiz de Oliveira Corrêa ◽  
...  

Abstract The great diversity of tropical wood species makes it difficult to obtain information about their technological properties. The present work employed ultrasound to estimate the physical and mechanical properties of four wood species: African mahogany (Khaya senegalensis), ‘freijó’ (Cordia goeldiana), ‘paricá’ (Schizolobium amazonicum), and teak (Tectona grandis). Nineteen-year-old adult trees were selected and harvested from an agroforestry system (AFS) located in the Brazilian Amazon. From the harvested trees, 1.5 m logs were sawn and test specimens were obtained for physical-mechanical assays. The ultrasound propagation speed (V 0) and the dynamic modulus of elasticity (E d ) were obtained from applying ultrasound longitudinally in wood samples. Values of V 0 decreased from the lightest wood (paricá) to the heaviest (African mahogany), and E d presented the opposite behavior. For the physical properties, the coefficient of determination (R 2) ranged from 12 to 35% and the best linear regression models were fitted for the basic density, having V 0 and E d as independent variables. For the mechanical properties, the values of R 2 varied from 18 to 63% and higher correlations were found between parallel-to-grain compression strength and E d , and rigidity, static bending and Ed. Ultrasound presented the potential to estimate the properties of tropical wood species from the ASF.


Author(s):  
Julia Naves Teixeira ◽  
Anderson Renato Vobornik Wolenski ◽  
Vinicius Borges de Moura Aquino ◽  
Tulio Hallak Panzera ◽  
Diogo Aparecido Lopes Silva ◽  
...  

CERNE ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 153-160
Author(s):  
Stefania Lima Oliveira ◽  
Ticyane Pereira Freire ◽  
Tamires Galvão Tavares Pereira ◽  
Lourival Marin Mendes ◽  
Rafael Farinassi Mendes

ABSTRACT The objective of this study is to assess the effect of the laminar inclusion on the physical and mechanical properties of sugarcane bagasse particleboard. We used the commercial panels of sugarcane bagasse produced in China. To evaluate the effect of the laminar inclusion was tested two wood species (Pinus and Eucalyptus) and two pressures (10 and 15 kgf.cm-2) along with a control (without laminar inclusion). The panels with laminar inclusion obtained improvements in the physical properties, with a significant reduction in the WA2h, WA24h and TS2h. There was a significant increase in the properties MOE and MOR parallel and Janka hardness, while the properties MOE and MOR perpendicular decreased significantly. The pinus and eucalyptus veneers inclusion resulted in similar results when added to the panel with a 10 kgf.cm-2 pressure. The use of 15 kgf.cm-2 pressure is not indicated for the pinus veneer inclusion in sugar cane bagasse panels. There was no effect of the pressure level when evaluating the eucalyptus veneer inclusion on the properties of the sugarcane bagasse panels.


Sign in / Sign up

Export Citation Format

Share Document