Optimal Sample Allocation for Three-Level Multisite Cluster-Randomized Trials

Author(s):  
Zuchao Shen ◽  
Benjamin Kelcey
2020 ◽  
Vol 45 (4) ◽  
pp. 446-474
Author(s):  
Zuchao Shen ◽  
Benjamin Kelcey

Conventional optimal design frameworks consider a narrow range of sampling cost structures that thereby constrict their capacity to identify the most powerful and efficient designs. We relax several constraints of previous optimal design frameworks by allowing for variable sampling costs in cluster-randomized trials. The proposed framework introduces additional design considerations and has the potential to identify designs with more statistical power, even when some parameters are constrained due to immutable practical concerns. The results also suggest that the gains in efficiency introduced through the expanded framework are fairly robust to misspecifications of the expanded cost structure and concomitant design parameters (e.g., intraclass correlation coefficient). The proposed framework is implemented in the R package odr.


Author(s):  
Eva Lorenz ◽  
Sabine Gabrysch

In cluster-randomized trials, groups or clusters of individuals, rather than individuals themselves, are randomly allocated to intervention or control. In this article, we describe a new command, ccrand, that implements a covariate-constrained randomization procedure for cluster-randomized trials. It can ensure balance of one or more baseline covariates between trial arms by restriction to allocations that meet specified balance criteria. We provide a brief overview of the theoretical background, describe ccrand and its options, and illustrate it using an example.


2010 ◽  
Vol 8 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Zhiying You ◽  
O Dale Williams ◽  
Inmaculada Aban ◽  
Edmond Kato Kabagambe ◽  
Hemant K Tiwari ◽  
...  

2021 ◽  
Author(s):  
L Miriam Dickinson ◽  
Patrick Hosokawa ◽  
Jeanette A Waxmonsky ◽  
Bethany M Kwan

Author(s):  
John A. Gallis ◽  
Fan Li ◽  
Elizabeth L. Turner

Cluster randomized trials, where clusters (for example, schools or clinics) are randomized to comparison arms but measurements are taken on individuals, are commonly used to evaluate interventions in public health, education, and the social sciences. Analysis is often conducted on individual-level outcomes, and such analysis methods must consider that outcomes for members of the same cluster tend to be more similar than outcomes for members of other clusters. A popular individual-level analysis technique is generalized estimating equations (GEE). However, it is common to randomize a small number of clusters (for example, 30 or fewer), and in this case, the GEE standard errors obtained from the sandwich variance estimator will be biased, leading to inflated type I errors. Some bias-corrected standard errors have been proposed and studied to account for this finite-sample bias, but none has yet been implemented in Stata. In this article, we describe several popular bias corrections to the robust sandwich variance. We then introduce our newly created command, xtgeebcv, which will allow Stata users to easily apply finite-sample corrections to standard errors obtained from GEE models. We then provide examples to demonstrate the use of xtgeebcv. Finally, we discuss suggestions about which finite-sample corrections to use in which situations and consider areas of future research that may improve xtgeebcv.


2021 ◽  
pp. 096228022199041
Author(s):  
Fan Li ◽  
Guangyu Tong

The modified Poisson regression coupled with a robust sandwich variance has become a viable alternative to log-binomial regression for estimating the marginal relative risk in cluster randomized trials. However, a corresponding sample size formula for relative risk regression via the modified Poisson model is currently not available for cluster randomized trials. Through analytical derivations, we show that there is no loss of asymptotic efficiency for estimating the marginal relative risk via the modified Poisson regression relative to the log-binomial regression. This finding holds both under the independence working correlation and under the exchangeable working correlation provided a simple modification is used to obtain the consistent intraclass correlation coefficient estimate. Therefore, the sample size formulas developed for log-binomial regression naturally apply to the modified Poisson regression in cluster randomized trials. We further extend the sample size formulas to accommodate variable cluster sizes. An extensive Monte Carlo simulation study is carried out to validate the proposed formulas. We find that the proposed formulas have satisfactory performance across a range of cluster size variability, as long as suitable finite-sample corrections are applied to the sandwich variance estimator and the number of clusters is at least 10. Our findings also suggest that the sample size estimate under the exchangeable working correlation is more robust to cluster size variability, and recommend the use of an exchangeable working correlation over an independence working correlation for both design and analysis. The proposed sample size formulas are illustrated using the Stop Colorectal Cancer (STOP CRC) trial.


Sign in / Sign up

Export Citation Format

Share Document