Community-based adaptation to climate variability and change: mapping and assessment of water resource management challenges in the North Pare highlands, Tanzania

2016 ◽  
Vol 37 (1) ◽  
pp. 30-48 ◽  
Author(s):  
Kgosietsile Velempini ◽  
Thomas A. Smucker ◽  
Kyle R. Clem
Water Policy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 1334-1352 ◽  
Author(s):  
Jyoti S. Jennewein ◽  
Kelly W. Jones

Operationalizing integrated water resource management (IWRM) often involves decentralization of water management via community-based management (CBM). While attention has been given to the components leading to successful CBM, less is known about what factors motivate people's willingness to participate (WTP) in such programs. This study analyzed factors that influence household WTP in CBM in a transboundary watershed located where El Salvador, Guatemala, and Honduras converge – the Trifinio Region. Several variables were hypothesized to influence WTP: sense of community (SOC), dependence on water resources, level of concern for water resources, and socio-economic characteristics. In 2014, quantitative and qualitative data were collected from 62 households in five communities. Most respondents reported high levels of WTP in future CBM initiatives, and multivariate regression analysis revealed that SOC was the most important predictor of WTP, with wealth and perceptions of watershed management also statistically significant. Qualitative analyses revealed water availability was more concerning than water quality, and perceptions of inequitable access to water is an important constraint to developing CBM strategies. Taken together, these results suggest that enhancing SOC and relationships between local and regional levels of governance prior to establishing community-based projects would facilitate more success in implementing IWRM.


2014 ◽  
Vol 18 (12) ◽  
pp. 5025-5040 ◽  
Author(s):  
B. J. Dermody ◽  
R. P. H. van Beek ◽  
E. Meeks ◽  
K. Klein Goldewijk ◽  
W. Scheidel ◽  
...  

Abstract. The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost–distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.


Sign in / Sign up

Export Citation Format

Share Document