Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2

Author(s):  
Sreus A. G. Naidu ◽  
Ghulam Mustafa ◽  
Roger A. Clemens ◽  
A. Satyanarayan Naidu
2020 ◽  
Author(s):  
Jack PK Bravo ◽  
Tyler L Dangerfield ◽  
David W Taylor ◽  
Kenneth A Johnson

Remdesivir is a nucleoside analog approved by the FDA for treatment of COVID-19. Here, we present a 3.9-Å-resolution cryoEM reconstruction of a remdesivir-stalled RNA-dependent RNA polymerase complex, revealing full incorporation of three copies of remdesivir monophosphate (RMP) and a partially incorporated fourth RMP in the active site. The structure reveals that RMP blocks RNA translocation after incorporation of three bases following RMP, resulting in delayed chain termination, which can guide the rational design of improved antiviral drugs.


2020 ◽  
Vol 6 (10) ◽  
pp. 2800-2811
Author(s):  
Anand Balakrishnan ◽  
Edmund Price ◽  
Catherine Luu ◽  
Jacob Shaul ◽  
Charles Wartchow ◽  
...  

2007 ◽  
Vol 51 (7) ◽  
pp. 2293-2303 ◽  
Author(s):  
Laura K. White ◽  
Jeong-Joong Yoon ◽  
Jin K. Lee ◽  
Aiming Sun ◽  
Yuhong Du ◽  
...  

ABSTRACT Paramyxoviruses comprise several major human pathogens. Although a live-attenuated vaccine protects against measles virus (MV), a member of the paramyxovirus family, the virus remains a principal cause of worldwide mortality and accounts for approximately 21 million cases and 300,000 to 400,000 deaths annually. The development of novel antivirals that allow improved case management of severe measles and silence viral outbreaks is thus highly desirable. We have previously described the development of novel MV fusion inhibitors. The potential for preexisting or emerging resistance in the field constitutes the rationale for the identification of additional MV inhibitors with a diverse target spectrum. Here, we report the development and implementation of a cell-based assay for high-throughput screening of MV antivirals, which has yielded several hit candidates. Following confirmation by secondary assays and chemical synthesis, the most potent hit was found to act as a target-specific inhibitor of MV replication with desirable drug-like properties. The compound proved highly active against multiple primary isolates of diverse MV genotypes currently circulating worldwide, showing active concentrations of 35 to 145 nM. Significantly, it does not interfere with viral entry and lacks cross-resistance with the MV fusion inhibitor class. Mechanistic characterization on a subinfection level revealed that the compound represents a first-in-class nonnucleoside inhibitor of MV RNA-dependent RNA polymerase complex activity. Singly or in combination with the fusion inhibitors, this novel compound class has high developmental potential as a potent therapeutic against MV and will likely further the mechanistic characterization of the viral polymerase complex.


2008 ◽  
Vol 51 (13) ◽  
pp. 3731-3741 ◽  
Author(s):  
Aiming Sun ◽  
Jeong-Joong Yoon ◽  
Yan Yin ◽  
Andrew Prussia ◽  
Yutao Yang ◽  
...  

2008 ◽  
Vol 82 (18) ◽  
pp. 9254-9264 ◽  
Author(s):  
Minna M. Poranen ◽  
Minni R. L. Koivunen ◽  
Dennis H. Bamford

ABSTRACT The replication and transcription of double-stranded RNA (dsRNA) viruses occur within a polymerase complex particle in which the viral genome is enclosed throughout the entire life cycle of the virus. A single protein subunit in the polymerase complex is responsible for the template-dependent RNA polymerization activity. The isolated polymerase subunit of the dsRNA bacteriophage φ6 was previously shown to replicate and transcribe given RNA molecules. In this study, we show that this enzyme also catalyzes nontemplated nucleotide additions to single-stranded and double-stranded nucleic acid molecules. This terminal nucleotidyltransferase activity not only is a property of the isolated enzyme but also is detected to take place within the viral nucleocapsid. This is the first time terminal nucleotidyltransferase activity has been reported for a dsRNA virus as well as for a viral particle. The results obtained together with previous high-resolution structural data on the φ6 RNA-dependent RNA polymerase suggest a mechanism for terminal nucleotidyl addition. We propose that the activity is involved in the termination of the template-dependent RNA polymerization reaction on the linear φ6 genome.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Egor P. Tchesnokov ◽  
Parisa Raeisimakiani ◽  
Marianne Ngure ◽  
David Marchant ◽  
Matthias Götte

2018 ◽  
Vol 37 (12) ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
Sabrina Dietz ◽  
Stefan Redl ◽  
Emil Karaulanov ◽  
Andrea Hildebrandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document