rna polymerization
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xinzhe Zuo ◽  
Tom Chou

Abstract Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNA polymerase, which usually happens when the polymerase tries to incorporate a noncognate or "mismatched" nucleotide triphosphate. Previous models have made simplifying assumptions such as neglecting the trailing polymerase behind the backtracking polymerase or assuming that the trailing polymerase is stationary. We derive exact analytic solutions of a stochastic model that includes locally interacting RNAPs by explicitly showing how a trailing RNAP influences the probability that an error is corrected or incorporated by the leading backtracking RNAP. We also provide two related methods for computing the mean times for error correction and incorporation given an initial local RNAP configuration. Using these results, we propose an effective interacting-RNAP lattice that can be readily simulated.


2021 ◽  
pp. 113880
Author(s):  
Dajeong Kim ◽  
Sangwoo Han ◽  
Yoonbin Ji ◽  
Heejeong Youn ◽  
Hyejin Kim ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1738
Author(s):  
Alesia A. Levanova ◽  
Eeva J. Vainio ◽  
Jarkko Hantula ◽  
Minna M. Poranen

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


2021 ◽  
Author(s):  
Liang Zhu ◽  
Peixin Chen ◽  
Hao Wang ◽  
Lishu Zhao ◽  
Haoyue Guo ◽  
...  

Abstract Background: The interaction between cancer cells and stromal cells has a significant contribution in tumorigenesis and tumor development, and plays an anti-tumor immune effect under the regulation of drug resistance related genes, which affects the outcome of patients. CCDC73, DLGAP1, DSEL, ESR1, and SEC14L5 were identified as drug resistance-related genes in lung cancer. However, these genes have no clear value in lung cancer in terms of expression and prognosis.Results: The transcriptional expression level of DLGAP1 was remarkably increased in lung cancer tissues, while the transcriptional level of SEC14L5 was significantly decreased. The pathological stage of lung adenocarcinoma (LUAD) was tightly correlated with the expression of SEC14L5. The lung cancer patients with high transcription level of CCDC73 gene tended to have a good prognosis. The function of drug resistance-related genes is mainly related to RNA polymerization. Our results showed that infiltration of six types of immune cells (dendritic cells, macrophages, neutrophils, B cells, CD4+T cells, and CD8+ T cells) significantly correlated with the expression of these drug resistance-related genes.Conclusions: Novel screening for immunotherapy targets and prognostic biomarkers in lung cancer may draw inspiration from our results.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250610
Author(s):  
Clément Madru ◽  
Ayten Dizkirici Tekpinar ◽  
Sandrine Rosario ◽  
Dariusz Czernecki ◽  
Sébastien Brûlé ◽  
...  

To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome’s transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).


Science ◽  
2021 ◽  
Vol 371 (6535) ◽  
pp. 1225-1232
Author(s):  
Razvan Cojocaru ◽  
Peter J. Unrau

Early life is thought to have required the self-replication of RNA by RNA replicases. However, how such replicases evolved and subsequently enabled gene expression remains largely unexplored. We engineered and selected a holopolymerase ribozyme that uses a sigma factor–like specificity primer to first recognize an RNA promoter sequence and then, in a second step, rearrange to a processive elongation form. Using its own sequence, the polymerase can also program itself to polymerize from certain RNA promoters and not others. This selective promoter–based polymerization could allow an RNA replicase ribozyme to define “self” from “nonself,” an important development for the avoidance of replicative parasites. Moreover, the clamp-like mechanism of this polymerase could eventually enable strand invasion, a critical requirement for replication in the early evolution of life.


2021 ◽  
Author(s):  
Fabio Chizzolini ◽  
Alexandra Kent ◽  
Luiz F. M. Passalacqua ◽  
Andrej Lupták

<p>A mechanism of nucleoside triphosphorylation would have been critical in an evolving “RNA world” to provide high-energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphoates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. We demonstrate that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under mild, prebiotically-relevant conditions, with second-order rate constants ranging from 1.7 x 10<sup>–6</sup> to 6.5 x 10<sup>–6</sup> M<sup>–1</sup> s<sup>–1</sup>. The ATP reaction shows a linear dependence on pH and Mg<sup>2+</sup>, and an enthalpy of activation of 88 ± 4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.</p>


2021 ◽  
Author(s):  
Fabio Chizzolini ◽  
Alexandra Kent ◽  
Luiz F. M. Passalacqua ◽  
Andrej Lupták

<p>A mechanism of nucleoside triphosphorylation would have been critical in an evolving “RNA world” to provide high-energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphoates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. We demonstrate that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under mild, prebiotically-relevant conditions, with second-order rate constants ranging from 1.7 x 10<sup>–6</sup> to 6.5 x 10<sup>–6</sup> M<sup>–1</sup> s<sup>–1</sup>. The ATP reaction shows a linear dependence on pH and Mg<sup>2+</sup>, and an enthalpy of activation of 88 ± 4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.</p>


Sign in / Sign up

Export Citation Format

Share Document