scholarly journals Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)

2016 ◽  
Vol 8 (2) ◽  
pp. 544-569 ◽  
Author(s):  
Haoyuan Hong ◽  
Biswajeet Pradhan ◽  
Dieu Tien Bui ◽  
Chong Xu ◽  
Ahmed M. Youssef ◽  
...  
2019 ◽  
Vol 9 (22) ◽  
pp. 4756 ◽  
Author(s):  
Lanbing Yu ◽  
Ying Cao ◽  
Chao Zhou ◽  
Yang Wang ◽  
Zhitao Huo

Landslides are destructive geological hazards that occur all over the world. Due to the periodic regulation of reservoir water level, a large number of landslides occur in the Three Gorges Reservoir area (TGRA). The main objective of this study was to explore the preference of machine learning models for landslide susceptibility mapping in the TGRA. The Wushan segment of TGRA was selected as a case study. At first, 165 landslides were identified and a total of 14 landslide causal factors were constructed from different data sources. Multicollinearity analysis and information gain ratio (IGR) model were applied to select landslide causal factors. Subsequently, the landslide susceptibility mapping using the calculated results of four models, namely, support vector machines (SVM), artificial neural networks (ANN), classification and regression tree (CART), and logistic regression (LR). The accuracy of these four maps were evaluated using the receive operating characteristic (ROC) and the accuracy statistic. Results revealed that eliminating the inconsequential factors can perhaps improve the accuracy of landslide susceptibility modelling, and the SVM model had the best performance in this study, providing strong technical support for landslide susceptibility modelling in TGRA.


2022 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Pengxiang Zhao ◽  
Zohreh Masoumi ◽  
Maryam Kalantari ◽  
Mahtab Aflaki ◽  
Ali Mansourian

Landslides often cause significant casualties and economic losses, and therefore landslide susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM in Zanjan, Iran and to explore the most important causative factor of landslides in the case study area. Different machine learning (ML) methods have been employed and compared to select the best results in the case study area. The CNN is compared with four ML algorithms, including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers have been prepared. Then, the algorithms were trained with related landslide and non-landslide points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%, AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and the LR have the best results after RF, respectively, in this case study. Moreover, variable importance analysis results indicate that slope and topographic curvature contribute more to the prediction. The results would be beneficial to planning strategies for landslide risk management.


Sign in / Sign up

Export Citation Format

Share Document