scholarly journals A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods

2022 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Pengxiang Zhao ◽  
Zohreh Masoumi ◽  
Maryam Kalantari ◽  
Mahtab Aflaki ◽  
Ali Mansourian

Landslides often cause significant casualties and economic losses, and therefore landslide susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM in Zanjan, Iran and to explore the most important causative factor of landslides in the case study area. Different machine learning (ML) methods have been employed and compared to select the best results in the case study area. The CNN is compared with four ML algorithms, including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers have been prepared. Then, the algorithms were trained with related landslide and non-landslide points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%, AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and the LR have the best results after RF, respectively, in this case study. Moreover, variable importance analysis results indicate that slope and topographic curvature contribute more to the prediction. The results would be beneficial to planning strategies for landslide risk management.

2019 ◽  
Vol 9 (22) ◽  
pp. 4756 ◽  
Author(s):  
Lanbing Yu ◽  
Ying Cao ◽  
Chao Zhou ◽  
Yang Wang ◽  
Zhitao Huo

Landslides are destructive geological hazards that occur all over the world. Due to the periodic regulation of reservoir water level, a large number of landslides occur in the Three Gorges Reservoir area (TGRA). The main objective of this study was to explore the preference of machine learning models for landslide susceptibility mapping in the TGRA. The Wushan segment of TGRA was selected as a case study. At first, 165 landslides were identified and a total of 14 landslide causal factors were constructed from different data sources. Multicollinearity analysis and information gain ratio (IGR) model were applied to select landslide causal factors. Subsequently, the landslide susceptibility mapping using the calculated results of four models, namely, support vector machines (SVM), artificial neural networks (ANN), classification and regression tree (CART), and logistic regression (LR). The accuracy of these four maps were evaluated using the receive operating characteristic (ROC) and the accuracy statistic. Results revealed that eliminating the inconsequential factors can perhaps improve the accuracy of landslide susceptibility modelling, and the SVM model had the best performance in this study, providing strong technical support for landslide susceptibility modelling in TGRA.


Author(s):  
M. Z. Ali ◽  
H.-J. Chu ◽  
S. Ullah ◽  
M. Shafique ◽  
A. Ali

<p><strong>Abstract.</strong> The 2005 Kashmir earthquake has triggered thousands of landslides which devastated most of the livelihood and other infrastructure in the area. Landslide inventory and subsequently landslide susceptibility mapping is one of the main prerequisite for taking mitigation measure against landslide effects. This study has focused on developing most updated and realistic landslide inventory and Susceptibility mapping. The high resolution data of Worldveiw-2 having spatial resolution of 0.4 m is used for landslide inventory. Support Vector Machine (SVM) classifier was used for landslide inventory developing. Total 51460 number of landslides were classified using semi-automatic technique with covering area of 265 Km<sup>2</sup>, smallest landslide mapped is covering area of 2.01 m<sup>2</sup> and the maximum covered area of single landslide is 3.01 Km<sup>2</sup>. Nine influential causative factors are used for landslide susceptibility mapping. Those causative factors include slope, aspect, profile curvature, elevation, distance from fault lines, distance from streams and geology. Logistic regression model was used for the Landslides susceptibility modelling. From model the highest coefficient was assigned to geology which shows that the geology has higher influence in the area. For landslide susceptibility mapping the 70 % of the data was used and 30% is used for the validation of the model. The prediction accuracy of the model in this study is 92 % using validation data. This landslide susceptibility map can be used for land use planning and also for the mitigation measure during any disaster.</p>


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.


Sign in / Sign up

Export Citation Format

Share Document