scholarly journals Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: a post-hoc analysis of a randomized clinical trial

Gut Microbes ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shaodong Wei ◽  
Asker Daniel Brejnrod ◽  
Urvish Trivedi ◽  
Martin Steen Mortensen ◽  
Mette Yun Johansen ◽  
...  
2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Mélanie Deschasaux ◽  
Kristien Bouter ◽  
Andrei Prodan ◽  
Evgeni Levin ◽  
Albert Groen ◽  
...  

AbstractRecently, increased attention has been drawn to the composition of the intestinal microbiota and its possible role in metabolic syndrome and type 2 diabetes (T2DM). However, potential variation in gut microbiota composition across ethnic groups is rarely considered despite observed unequal prevalence for these diseases. Our objective was therefore to study the gut microbiota composition across health, metabolic syndrome and T2DM in a multi-ethnic population residing in the same geographical area. 16S rRNA gene sequencing was performed on fecal samples from 3926 participants to the HELIUS cohort (Amsterdam, The Netherlands), representing 6 ethnic groups (Dutch, Ghanaians, Moroccans, Turks, Surinamese of either African or South-Asian descent). Included participants completed a questionnaire and underwent a physical examination and overnight fasted blood sampling. Gut microbiota composition was compared across metabolic status (diabetes with and without metformin use, metabolic syndrome and its subsequent components, health) and ethnicities using Wilcoxon-Mann-Withney tests and logistic regressions. Overall, the gut microbiota alpha-diversity (richness, Shannon index and phylogenetic diversity) decreased with worsening of the metabolic state (comparing health to metabolic syndrome to T2DM) but this was only partially reproduced in ethnic-specific analyses. In line, a lower alpha-diversity was found in relation to all metabolic syndrome components as well as in T2DM subjects using metformin compared to non-users. Alterations, mainly decreased abundances, were also observed at the genus level (many Clostridiales) in metabolic syndrome subjects and more strongly in T2DM subjects with differences across ethnic groups. In particular, we observed decreased abundances of members of the Peptostreptococcaceae family and of Turicibacter and an increased abundance of a member of the Enterobacteriaceae family. Our data highlight several compositional differences in the gut microbiota of individuals with metabolic syndrome or T2DM. These features, confirming prior observations, give some insights into potential key intestinal bacteria related to a worsening of metabolic state. Our results also underscore possible ethnic-specific profiles associated with these microbiota alterations that should be further explored.


2019 ◽  
Vol 21 (10) ◽  
pp. 2257-2266 ◽  
Author(s):  
Mathias Ried‐Larsen ◽  
Mette Y. Johansen ◽  
Christopher S. MacDonald ◽  
Katrine B. Hansen ◽  
Robin Christensen ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3289
Author(s):  
Manon Balvers ◽  
Mélanie Deschasaux ◽  
Bert-Jan van den Born ◽  
Koos Zwinderman ◽  
Max Nieuwdorp ◽  
...  

It is currently unknown whether associations between gut microbiota composition and type 2 diabetes (T2D) differ according to the ethnic background of individuals. Thus, we studied these associations in participants from two ethnicities characterized by a high T2D prevalence and living in the same geographical area, using the Healthy Life In Urban Settings (HELIUS) study. We included 111 and 128 T2D participants on metformin (Met-T2D), 78 and 49 treatment-naïve T2D (TN-T2D) participants, as well as a 1:1 matched group of healthy controls from, respectively, African Surinamese and South-Asian Surinamese descent. Fecal microbiome profiles were obtained through 16S rRNA gene sequencing. Univariate and machine learning analyses were used to explore the associations between T2D and the composition and function of the gut microbiome in both ethnicities, comparing Met-T2D and TN-T2D participants to their respective healthy control. We found a lower α-diversity for South-Asian Surinamese TN-T2D participants but no significant associations between TN-T2D status and the abundance of bacterial taxa or functional pathways. In African Surinamese participants, we did not find any association between TN-T2D status and the gut microbiome. With respect to Met-T2D participants, we identified several bacterial taxa and functional pathways with a significantly altered abundance in both ethnicities. More alterations were observed in South-Asian Surinamese. Some altered taxa and pathways observed in both ethnicities were previously related to metformin use. This included a strong negative association between the abundance of Romboutsia and Met-T2D status. Other bacterial taxa were consistent with previous observations in T2D, including reduced butyrate producers such as Anaerostipes hadrus. Hence, our results highlighted both shared and unique gut microbial biomarkers of Met-T2D in individuals from different ethnicities but living in the same geographical area. Future research using higher-resolution shotgun sequencing is needed to clarify the role of ethnicity in the association between T2D and gut microbiota composition.


Sign in / Sign up

Export Citation Format

Share Document