dna oxidation
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 50)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Jingwen Chen ◽  
Eun Na ◽  
Sun Young Lim

Aim and Objective: We investigated the inhibitory effects of fractions from Lycopus lucidus Turcz. leaves on genomic DNA oxidation, nitric oxide (NO) production and matrix metalloproteinase (MMP) activity. Material and Methods: Oxidative damage of genomic DNA was detected after Fenton reaction with H2O2 using DNA electrophoresis. Western blotting was performed to compare the expression levels of MMP-2 in phorbol 12-myristate 13-acetate (PMA)-induced HT-1080 cells. Lipopolysacchride (LPS)-induced NO production in RAW 264.7 cells was measured using Griess reagent. Results: ll fractions (n-Hexane, 85% aq. MeOH, n-BuOH, and water fractions) from the leaves of L. lucidus Turcz. significantly inhibited intracellular production of reactive oxygen species (ROS) (p<0.05). Particularly, 85% aq. MeOH and n-BuOH fractions showed higher ROS inhibitory activity than the other fractions. n-Hexane, 85% aq. MeOH, n-BuOH and water (0.05 mg/mL) fractions significantly inhibited oxidative DNA damage by 57.97%, 68.48%, 58.97%, and 68.39%, respectively (p <0.05). Treatment of RAW 264.7 cells with each fraction reduced LPS-induced NO production in a dose-dependent manner (p<0.05). n-Hexane and 85% aq. MeOH fractions notably reduced MMP-2 secretion levels of in the culture supernatants from HT-1080 cells. Conclusion: Overall, these results indicated that L. lucidus Turcz. leaves can be exploited as plant based sources of antioxidants in the pharmaceutical, cosmetic, nutraceutical and food industries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Ognik ◽  
Dariusz Mikulski ◽  
Paweł Konieczka ◽  
Bartłomiej Tykałowski ◽  
Magdalena Krauze ◽  
...  

AbstractIn the present experiment, it was assumed that the appropriate dietary ratio of arginine (Arg) to lysine (Lys) can improve the immune status and growth performance of turkeys. The aim of this study was to evaluate the effects of two inclusion rates of Arg relative to Lys in turkey diets with Lys content consistent with National Research Council (NRC) recommendations or 10% higher on the immune status of birds and indicators of protein and DNA damage due to oxidation, nitration or epigenetic changes. Another goal was to determine which dietary Arg:Lys ratio stimulates the immune response of turkeys vaccinated against Ornithobacterium rhinotracheale. The experiment was performed on 576 turkeys randomly assigned to four groups with two levels of Lys (low = NRC recommendation or high = NRC + 10%) and two levels of Arg (95% or 105% Arg relative to the content of dietary Lys). It was found that the Lys content of turkey diets should be 10% higher than that recommended by the NRC and combined with the higher Arg level (105% of Lys). Although the above Arg:Lys ratio did not improve the growth performance of birds, it stimulated their immune system and reduced protein nitration as well as protein and DNA oxidation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5211
Author(s):  
Dominik Bakalarz ◽  
Edyta Korbut ◽  
Zhengnan Yuan ◽  
Bingchen Yu ◽  
Dagmara Wójcik ◽  
...  

Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5–50 μmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 μmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isela Álvarez-González ◽  
Scarlett Camacho-Cantera ◽  
Patricia Gómez-González ◽  
Michael J. Rendón Barrón ◽  
José A. Morales-González ◽  
...  

AbstractWe evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.


Sign in / Sign up

Export Citation Format

Share Document