scholarly journals When to suspect contamination rather than colonization – lessons from a putative fetal sheep microbiome

Gut Microbes ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Simone Bihl ◽  
Marcus de Goffau ◽  
Daniel Podlesny ◽  
Nicola Segata ◽  
Fergus Shanahan ◽  
...  
Keyword(s):  
1998 ◽  
Vol 5 (1) ◽  
pp. 156A-156A
Author(s):  
M SCHWAB ◽  
M ROEDEL ◽  
L BUCHWALDER ◽  
B WALTHER ◽  
P NATHANIELSZ
Keyword(s):  

Diabetes ◽  
1989 ◽  
Vol 38 (5) ◽  
pp. 597-603 ◽  
Author(s):  
J. R. Milley ◽  
J. S. Papacostas
Keyword(s):  

2019 ◽  
Vol 24 (6) ◽  
pp. 652-662 ◽  
Author(s):  
Marc Oria ◽  
Soner Duru ◽  
Federico Scorletti ◽  
Fernando Vuletin ◽  
Jose L. Encinas ◽  
...  

OBJECTIVEThe authors hypothesized that new agents such as BioGlue would be as efficacious as kaolin in the induction of hydrocephalus in fetal sheep.METHODSThis study was performed in 34 fetal lambs randomly divided into 2 studies. In the first study, fetuses received kaolin, BioGlue (2.0 mL), or Onyx injected into the cisterna magna, or no injection (control group) between E85 and E90. In the second study, fetuses received 2.0-mL or 2.5-mL injections of BioGlue into the cisterna magna between E85 and E90. Fetuses were monitored using ultrasound to assess lateral ventricle size and progression of hydrocephalus. The fetuses were delivered (E120–E125) and euthanized for histological analysis. Selected brain sections were stained for ionized calcium binding adaptor 1 (Iba1) and glial fibrillary acidic protein (GFAP) to assess the presence and activation of microglia and astroglia, respectively. Statistical comparisons were performed with Student’s t-test for 2 determinations and ANOVA 1-way and 2-way repeated measures for multiple determinations.RESULTSAt 30 days after injection, the lateral ventricles were larger in all 3 groups that had undergone injection than in controls (mean diameter in controls 3.76 ± 0.05 mm, n = 5). However, dilatation was greater in the fetuses injected with 2 mL of BioGlue (11.34 ± 4.76 mm, n = 11) than in those injected with kaolin (6.4 ± 0.98 mm, n = 7) or Onyx (5.7 ± 0.31 mm, n = 6) (ANOVA, *p ≤ 0.0001). Fetuses injected with 2.0 mL or 2.5 mL of BioGlue showed the same ventricle dilatation but it appeared earlier (at 10 days postinjection) in those injected with 2.5 mL. The critical threshold of ventricle dilatation was 0.1 for all the groups, and only the BioGlue 2.0 mL and BioGlue 2.5 mL groups exceeded this critical value (at 30 days and 18 days after injection, respectively) (ANOVA, *p ≤ 0.0001). Moderate to severe hydrocephalus with corpus callosum disruption was observed in all experimental groups. All experimental groups showed ventriculomegaly with significant microgliosis and astrogliosis in the subventricular zone around the lateral ventricles. Only kaolin resulted in significant microgliosis in the fourth ventricle area (ANOVA, *p ≤ 0.005).CONCLUSIONSThe results of these studies demonstrate that BioGlue is more effective than Onyx or kaolin for inducing hydrocephalus in the fetal lamb and results in a volume-related response by obstructive space-occupancy without local neuroinflammatory reaction. This novel use of BioGlue generates a model with potential for new insights into hydrocephalus pathology and the development of therapeutics in obstructive hydrocephalus. In addition, this model allows for the study of acute and chronic obstructive hydrocephalus by using different BioGlue volumes for intracisternal injection.


1985 ◽  
Vol 249 (1) ◽  
pp. E115-E120
Author(s):  
F. H. Morriss ◽  
R. N. Marshall ◽  
S. S. Crandell ◽  
B. J. Fitzgerald ◽  
L. Riddle

In vitro assays for [35S]sulfate uptake by ovine fetal costal cartilage were used to assess gestational changes in cartilage metabolism. Addition of 20% normal human serum to the incubation medium increased fetal cartilage [35S]sulfate incorporation into glycosaminoglycans. Both basal and human serum-stimulated uptakes of [35S]sulfate by fetal sheep cartilage decreased from midgestation to full term. The incremental response in [35S]sulfate uptake that was stimulated by human serum decreased as gestation proceeded to full-term. Fetal serum sulfate concentration decreased logarithmically during gestation, raising the possibility that cartilage sulfate uptake might become substrate limited as full term is approached. Perfusion of seven late gestation sheep fetuses for 7 days with Na2SO4 to achieve serum sulfate concentrations similar to those observed earlier in gestation resulted in a 33% increase in mean cartilage [35S]sulfate uptake compared with that of control twin fetuses, but uptake was not increased to values that occurred spontaneously earlier in gestation. These results suggest that the decreasing rate of [35S]sulfate uptake by fetal cartilage during the last half of gestation is associated only minimally with decreasing serum sulfate levels and is most consistent with intrinsic change in resting chondrocyte metabolism during gestation.


1988 ◽  
Vol 65 (6) ◽  
pp. 2420-2426 ◽  
Author(s):  
A. D. Bocking ◽  
R. Gagnon ◽  
K. M. Milne ◽  
S. E. White

Experiments were conducted in unanesthetized, chronically catheterized pregnant sheep to determine the fetal behavioral response to prolonged hypoxemia produced by restricting uterine blood flow. Uterine blood flow was reduced by adjusting a vascular occluder placed around the maternal common internal iliac artery to decrease fetal arterial O2 content from 6.1 +/- 0.3 to 4.1 +/- 0.3 ml/dl for 48 h. Associated with the decrease in fetal O2 content, there was a slight increase in fetal arterial PCO2 and decrease in pH, which were both transient. There was an initial inhibition of both fetal breathing movements and eye movements but no change in the pattern of electrocortical activity. After this initial inhibition there was a return to normal incidence of both fetal breathing movements and eye movements by 16 h of the prolonged hypoxemia. These studies indicate that the chronically catheterized sheep fetus is able to adapt behaviorally to a prolonged decrease in arterial O2 content secondary to the restriction of uterine blood flow.


Sign in / Sign up

Export Citation Format

Share Document