scholarly journals Design and implementation of an open circuit voltage prediction mechanism for lithium-ion battery systems

2014 ◽  
Vol 2 (1) ◽  
pp. 707-717 ◽  
Author(s):  
T. Stockley ◽  
K. Thanapalan ◽  
M. Bowkett ◽  
J. Williams
2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yun Zhang ◽  
Chenghui Zhang ◽  
Naxin Cui

Open-circuit voltage (OCV) is one of the most important parameters in determining state of charge (SoC) of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current) and the measurable output (terminal voltage) signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.


2013 ◽  
Vol 347-350 ◽  
pp. 1852-1855 ◽  
Author(s):  
Ding Xuan Yu ◽  
Yan Xia Gao

This paper presents Extended Kalman-filter (EKF) algorithm which is based on a first-order Lithium-ion batteries model. Curve fitting According to the OCV(open circuit voltage),SOC(state of charge) parameters measured in experiments, descript status equation and observation equation of Lithium-ion battery in detail , so that it can accurately demonstrates the characteristics of the Lithium-ion battery. Simulation and experiment results show the feasibility and effectiveness of the algorithm.


2020 ◽  
Vol 362 ◽  
pp. 137101
Author(s):  
Bin Pan ◽  
Dong Dong ◽  
Jionggeng Wang ◽  
Jianbo Nie ◽  
Shuangyu Liu ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3383 ◽  
Author(s):  
Woo-Yong Kim ◽  
Pyeong-Yeon Lee ◽  
Jonghoon Kim ◽  
Kyung-Soo Kim

This paper presents a nonlinear-model-based observer for the state of charge estimation of a lithium-ion battery cell that always exhibits a nonlinear relationship between the state of charge and the open-circuit voltage. The proposed nonlinear model for the battery cell and its observer can estimate the state of charge without the linearization technique commonly adopted by previous studies. The proposed method has the following advantages: (1) The observability condition of the proposed nonlinear-model-based observer is derived regardless of the shape of the open circuit voltage curve, and (2) because the terminal voltage is contained in the state vector, the proposed model and its observer are insensitive to sensor noise. A series of experiments using an INR 18650 25R battery cell are performed, and it is shown that the proposed method produces convincing results for the state of charge estimation compared to conventional SOC estimation methods.


Sign in / Sign up

Export Citation Format

Share Document