scholarly journals Hardware for classification of power quality problems in three phase system using Microcontroller

2017 ◽  
Vol 4 (1) ◽  
pp. 1386364 ◽  
Author(s):  
S. Asha Kiranmai ◽  
A. Jaya Laxmi ◽  
Qingsong Ai
2019 ◽  
Vol 16 (3) ◽  
pp. 289-310 ◽  
Author(s):  
Vinay Naguboina ◽  
Satish Gudey

In this work, a Three phase Transformerless Hybrid Series Active Power Filter (THSeAF) based on Sliding Mode Control (SMC) is proposed to mitigate the voltage and current distortions present in an electrical distribution systems (EDS). A Sliding Mode Controller is designed by controlling the parameters present on the load side as well as source side of the system. Three separate voltage source converters (VSC) are used. The mod1elling of the system is derived by considering a single-phase system by using state space analysis. The frequency response characteristics have been derived for the single-phase system and the stability of the system is studied. It is observed that the system has good stability margins when the SMC is applied at the source side compared to load side. Simulation results obtained in PSCAD/EMTDC v4.6 have been observed for power quality issues like voltage sags, voltage swells, voltage distortions, voltage unbalances and their concurrent occurrence. The approach of stationary reference frame was used for source side control and PQ theory is used for load side control. It is observed that the proposed controller works well in obtaining a stable and constant load voltage during these power quality issues. The difference in settling time observed is around 4 ms for the load side and source side control. The THD present in the load voltage is near about 1%. The SMC is found to be robust in obtaining a constant load voltage with low THD and an improved power factor.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Surajit Chattopadhyay ◽  
Samarjit Sengupta ◽  
Madhuchhanda Mitra

This paper presents an approach for assessment of power quality parameters using analysis of fundamental and harmonic voltage and current waveforms. Park transformation technique has been utilized for the analysis in three-phase system, which has reduced the computational effort to a great extent. Contributions of fundamental and harmonic components in power system voltage and current signals have been assessed separately. An algorithm has been developed to calculate the power quality parameters from online signals. This algorithm has been simulated for a radial system, and the results have been compared with that obtained from a standard FFT-based system. The results are seen to be in good agreement with that of the standard system.


2018 ◽  
Vol 225 ◽  
pp. 05014 ◽  
Author(s):  
P. Suresh ◽  
T. Gowri Manohar

This paper proposes a modified control strategy for unified Power Quality conditioner to alleviate voltage and current abnormalities in three phase system. Renewable source integration and nonlinear loads depreciates Power Quality of the system. Active Power Filters play a paramount role in alleviating PQ disturbances. To deal with current imperfections and reactive power compensation, modified dq controller is proposed for shunt controller. ANFIS-dq control strategy is proposed for Series Controller to suppress voltage imperfections Photovoltaic unit is optimally connected at DC link of UPQC for supporting controlling action and to deliver real power Proposed optimal renewable source integrated UPQC performance is studied with traditional PI and ANFIS controller. MATLAB / SIMULINK platform is used for analyzing proposed system performance.


Author(s):  
Mohmmad Ahmad ◽  
Sheeraz Kirmani

<p>This paper presents the adaptive filtering based least mean square control<br />algorithm for distribution static compensator (DSTATCOM) in three-phase<br />grid tied system for linear/non-linear load, to solve the power quality<br />problems caused by solid-state equipment and devices. This is shown that the<br />active component weights obtained from the load currents in the LMS<br />adaptive filter are used to produce the reference currents and subsequently<br />produces the switching pulses for VSC of the compensator. The complete<br />circuit along with the adaptive technique and diode bridge rectifier type nonlinear load is simulated in Matlab/Simulink software. Initially the circuit was<br />simulated for a three phase linear inductive load. Later it was simulated for a<br />rectifier load connected at PCC with a disconnection of the load of any phase<br />for a short duration of time. It is concluded that the harmonics are found<br />within the limit. The harmonics and power results for both types of loads are<br />compared in a tabular form. Hence this three phase system with<br />DSTATCOM improves the power quality in the three-phase distribution<br />network therefore, serves to provide harmonics reduction, load balancing and<br />regulating the terminal voltage at the point of common coupling (PCC).</p>


In recent years, power quality (PQ) has become an important issue for utilities and users. In order to improve PQ, a method for detecting and classifying power quality disturbances (PQDs) is proposed. Hence in addition to identifying the disturbance signals, the proposed method is able to determine its type when occurring. This approach is based on Multilayer perceptron and Levenberg-Marquardt training rule. It is inspired by the desire to take advantage of the parallelism inherent to neural networks in view of hardware implementation using reconfigurable chips. The inputs of these networks are the samples obtained on the power grid in various conditions. The proposed method is tested for sags and swells. To classify the disturbances, the neural architectures have been generalized and configured according to the number and type of disturbances to be treated. To validate and test the proposal, a grid model was built with a three-phase fault generator under Matlab / Simulink R2017a. After comparing the results with those obtained by certain methods in the literature, the proposal proves to be an efficient and reliable tool for monitoring PQ. In fact it has the smallest mean square error and a highperformance with precision of 96%.


Author(s):  
Balaram Das ◽  
Pratap K. Panigrahi ◽  
Soumya R. Das ◽  
Debani P. Mishra ◽  
Surender Reddy Salkuti

Abstract The increasing use of power electronics devices as well as the integration of renewable source-based microgrids (MG) has seriously affects the power quality (PQ) of the three-phase power system. Therefore, for the improvement of PQ, it is required to reduce the total harmonics distortion (THD) in the utility network. In this work, the improvement of PQ is discussed in a photovoltaic (PV) based MG integrated three-phase system using a three-level H-bridge (3LHB) multilevel inverter (MI). The MI is used for compensating the source current harmonics and reducing the THD by meeting the IEEE standard guidelines. Besides, the proposed model helps manage the reactive power with control of DC link bus voltage through the PV system. The proposed model is helpful not only in reducing the harmonics but also in providing additional active power to the load if any electrical disturbances occur on the grid side. The maximum power point tracking (MPPT) technique employed in PV is of an improved form of Perturb and Observe (P&O). Further, the reference current generation is derived using the direct current control (DCC) and indirect current control (ICC) techniques. The MG integrated MI is investigated in both DCC and ICC method using three different DC bus voltage controllers; proportional-integral (PI), fuzzy logic controller (FLC), and fuzzy sliding mode control (FSMC). The proposed microgrid integrated system is analyzed with the MATLAB/Simulink tool.


2020 ◽  
Vol 8 ◽  
Author(s):  
Soumya Ranjan Das ◽  
Prakash K. Ray ◽  
Arun Kumar Sahoo ◽  
Karthik Balasubramanian ◽  
Gaddam Sanjeeva Reddy

Sign in / Sign up

Export Citation Format

Share Document