International Journal of Power Management Electronics
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By Hindawi Limited

1687-6687, 1687-6679

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Bradley A. Reese ◽  
Brice McPherson ◽  
Robert Shaw ◽  
Jared Hornberger ◽  
Roberto M. Schupbach ◽  
...  

A complete design strategy (mechanical and electrical) for a 25 W 28 V/5 V dc-dc converter utilizing SiC and SOI electronics is presented. The converter includes a high-temperature SOI-based PWM controller featuring 150 kHz operation, a PID feedback loop, maximum duty cycle limit, complementary or symmetrical outputs, and a bootstrapped high-side gate driver. Several passive technologies were investigated for both control and power sections. Capacitor technologies were characterized over temperature and over time at 300C∘, power inductors designed and tested up to 350C∘, and power transformers designed and tested up to 500C∘. Northrop Grumman normally-off SiC JFETs were used as power switches and were characterized up to 250C∘. Efficiency and mass optimization routines were developed with the data gained from the first prototype. The effects of radiation on SiC and SOI electronics are then discussed. The results of the first prototype module are presented, with operation from 25C∘ up to an ambient temperature of 240C∘.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Lu ◽  
Hongwei Jia ◽  
Andres Arias ◽  
Xun Gong ◽  
Z. John Shen

A novel concept of on-chip bondwire inductors and transformers with ferrite epoxy glob coating is proposed to offer a cost effective approach realizing power systems on chip (SOC). We have investigated the concept both experimentally and with finite element modeling. A Q factor of 30–40 is experimentally demonstrated for the bondwire inductors which represents an improvement by a factor of 3–30 over the state-of-the-art MEMS micromachined inductors. Transformer parameters including self- and mutual inductance and coupling factors are extracted from both modeled and measured S-parameters. More importantly, the bondwire magnetic components can be easily integrated into SOC manufacturing processes with minimal changes and open enormous possibilities for realizing cost-effective, high-current, high-efficiency power SOCs.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Surajit Chattopadhyay ◽  
Samarjit Sengupta ◽  
Madhuchhanda Mitra

This paper presents an approach for assessment of power quality parameters using analysis of fundamental and harmonic voltage and current waveforms. Park transformation technique has been utilized for the analysis in three-phase system, which has reduced the computational effort to a great extent. Contributions of fundamental and harmonic components in power system voltage and current signals have been assessed separately. An algorithm has been developed to calculate the power quality parameters from online signals. This algorithm has been simulated for a radial system, and the results have been compared with that obtained from a standard FFT-based system. The results are seen to be in good agreement with that of the standard system.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Wang ◽  
Gangyao Wang ◽  
Jun Li ◽  
Alex Q. Huang ◽  
Jerry Melcher ◽  
...  

A novel MOS-controlled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5 A/cm2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100 W/cm2 conduction and the 100 W/cm2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Yali Xiong ◽  
Xu Cheng ◽  
Xiangcheng Wang ◽  
Pavan Kumar ◽  
Lina Guo ◽  
...  

This paper investigates the performance perspectives and theoretical limitations of trench power MOSFETs in synchronous rectifier buck converters operating in the MHz frequency range. Several trench MOSFET technologies are studied using a mixed-mode device/circuit modeling approach. Individual power loss contributions from the control and synchronous MOSFETs, and their dependence on switching frequency between 500 kHz and 5 MHz are discussed in detail. It is observed that the conduction loss contribution decreases from 40% to 4% while the switching loss contribution increases from 60% to 96% as the switching frequency increases from 500 KHz to 5 MHz. Beyond 1 MHz frequency there is no obvious benefit to increase the die size of either SyncFET or CtrlFET. The RDS(ON)×QG figure of merit (FOM) still correlates well to the overall converter efficiency in the MHz frequency range. The efficiency of the hard switching buck topology is limited to 80% at 2 MHz and 65% at 5 MHz even with the most advanced trench MOSFET technologies.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Victor Veliadis ◽  
Ty McNutt ◽  
Megan Snook ◽  
Harold Hearne ◽  
Paul Potyraj ◽  
...  

SiC VJFETs are excellent candidates for reliable high-power/temperature switching as they only use pn junctions in the active device area where the high-electric fields occur. VJFETs do not suffer from forward voltage degradation, exhibit excellent short-circuit performance, and operate at 300°C. 0.19 cm2 1200 V normally-on and 0.15 cm2 low-voltage normally-off VJFETs were fabricated. The 1200-V VJFET outputs 53 A with a forward drain voltage drop of 2 V and a specific onstate resistance of 5.4 mΩ cm2. The low-voltage VJFET outputs 28 A with a forward drain voltage drop of 3.3 V and a specific onstate resistance of 15 mΩ cm2. The 1200-V SiC VJFET was connected in the cascode configuration with two Si MOSFETs and with a low-voltage SiC VJFET to form normally-off power switches. At a forward drain voltage drop of 2.2 V, the SiC/MOSFETs cascode switch outputs 33 A. The all-SiC cascode switch outputs 24 A at a voltage drop of 4.7 V.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Sibylle Dieckerhoff ◽  
Thies Wernicke ◽  
Christine Kallmayer ◽  
Stephan Guttowski ◽  
Herbert Reichl

The impact of a reduced package stray inductance on the switching performance of fast power MOSFETs is discussed applying advanced 3D packaging technologies. Starting from an overview over new packaging approaches, a solder bump technology using a flexible PI substrate is exemplarily chosen for the evaluation. Measurement techniques to determine the stray inductance are discussed and compared with a numerical solution based on the PEEC method. Experimental results show the improvement of the voltage utilization while there is only a slight impact on total switching losses.


2008 ◽  
Vol 2008 ◽  
pp. 1-9
Author(s):  
Anup Kumar Panda ◽  
Swapnajit Pattnaik ◽  
K. K. Mohapatra

This paper proposes a zero-voltage-transition (ZVT) pulse-width-modulated (PWM) synchronous buck converter, which is designed to operate at low voltage and high efficiency typically required for portable systems. A new passive auxiliary circuit that allows the main switch to operate with zero-voltage switching has been incorporated in the conventional PWM synchronous buck converter. The operation principles and a detailed steady-state analysis of the ZVT-PWM synchronous converter implemented with the auxiliary circuit are presented. Besides, the main switch and all of the semiconductor devices operate under soft-switching conditions. Thus, the auxiliary circuit provides a larger overall efficiency. The feasibility of the auxiliary circuit is confirmed by simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document