Bioprosthestic Valve Fracture of the Direct Flow Medical Valve – A bench test

Author(s):  
Christina Brinkmann ◽  
Joachim Schofer
Keyword(s):  
2021 ◽  
Vol 45 (3) ◽  
pp. 197-206
Author(s):  
Giovanni Alfonso Chiariello ◽  
Saimir Kuci ◽  
Guglielmo Saitto ◽  
Massimo Massetti ◽  
Ottavio Alfieri ◽  
...  

1982 ◽  
Vol 18 (4) ◽  
pp. 167-170
Author(s):  
Zh. A. Tasev ◽  
Zh. S. Stefanov
Keyword(s):  

Author(s):  
Jaychandar Muthu ◽  
Kanak Soundrapandian ◽  
Jyoti Mukherjee

For suspension components, bench testing for strength is mostly accomplished at component level. However, replicating loading and boundary conditions at the component level in order to simulate the suspension system environment may be difficult. Because of this, the component's bench test failure mode may not be similar to its real life failure mode in vehicle environment. A suspension system level bench test eliminates most of the discrepancies between simulated component level and real life vehicle level environments resulting in higher quality bench tests yielding realistic test results. Here, a suspension level bench test to estimate the strength of its trailing arm link is presented. A suspension system level nonlinear finite element model was built and analyzed using ABAQUS software. The strength loading was applied at the wheel end. The analysis results along with the hardware test correlations are presented. The reasons why a system level test is superior to a component level one are also highlighted.


1996 ◽  
Vol 32 (6) ◽  
pp. 525-528
Author(s):  
G. K. Zibert ◽  
I. É. Ibragimov
Keyword(s):  

2014 ◽  
Vol 563 ◽  
pp. 219-223
Author(s):  
Jing Ma ◽  
Bai Jing Qiu ◽  
Run Yan ◽  
Bei Fen Zhu

In order to study the working state of the export of jet-mixing apparatus under different loads,by comparing the bench test and its application in spray system, the working state of jet-mixing apparatus is studied.The results show that, in the bench test, the export of jet-mixing apparatus is unloaded and the state of jet-mixing apparatus is absorbing pesticide; the jet nozzle whose diameter is 2mm and suction chamber whose diameter is 3mm of the jet-mixing apparatus produce a large number of bubbles, the suction chamber emerges cavitation. The export of jet-mixing apparatus is connected with the F110 spray system, the working state of jet-mixing apparatus with a 2mm diameter jet nozzle is sucking pesticide; the working state of 3mm and 4mm jet nozzle diameter is reflux. The export of jet-mixing apparatus is connected with the outlet of F110 spray system suction chamber.They do not emerge cavitation. The load on the export of jet-mixing apparatus affect the working state of jet-mixing apparatus, also has certain influence on cavitation in the suction chamber.


2016 ◽  
Vol 24 (9) ◽  
pp. 1774-1786 ◽  
Author(s):  
Sérgio J Idehara ◽  
Fernando L Flach ◽  
Douglas Lemes

A vibration model of the powertrain can be used to predict its dynamic behavior when excited by fluctuations in the engine torque and speed. The torsional vibration resulting from torque and speed fluctuations increases the rattle noise in the gearbox and it should be controlled or minimized in order to gain acceptance by clients and manufactures. The fact that the proprieties of the torsional damper integrated into the clutch disc alter the dynamic characteristic of the system is important in the automotive industry for design purposes. In this study, bench test results for the characteristics of a torsional damper for a clutch system (torsional stiffness and friction moment) and powertrain torsional vibration measurements taken in a passenger car were used to verify and calibrate the model. The adjusted model estimates the driveline natural frequency and the time response vibration. The analysis uses order tracking signal processing to isolate the response from the engine excitation (second-order). It is shown that a decrease in the stiffness of the clutch disc torsional damper lowers the natural frequency and an increase in the friction moment reduces the peak amplitude of the gearbox torsional vibration. The formulation and model adjustment showed that a nonlinear model with three degrees of freedom can represent satisfactorily the powertrain dynamics of a front-wheel drive passenger car.


Sign in / Sign up

Export Citation Format

Share Document