When Inverted Faces are Recognized: The Role of Configural Information in Face Recognition

2000 ◽  
Vol 53 (2) ◽  
pp. 513-536 ◽  
Author(s):  
Helmut Leder ◽  
Vicki Bruce
2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


Perception ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 174-177
Author(s):  
Sarah Laurence ◽  
Jordyn Eyre ◽  
Ailsa Strathie

Expertise in familiar face recognition has been well-documented in several studies. Here, we examined the role of context using a surprise lecturer recognition test. Across two experiments, we found few students recognised their lecturer when they were unexpected, but accuracy was higher when the lecturer was preceded by a prompt. Our findings suggest that familiar face recognition can be poor in unexpected contexts.


Perception ◽  
10.1068/p5192 ◽  
2005 ◽  
Vol 34 (9) ◽  
pp. 1117-1134 ◽  
Author(s):  
Claus-Christian Carbon ◽  
Helmut Leder

We investigated the early stages of face recognition and the role of featural and holistic face information. We exploited the fact that, on inversion, the alienating disorientation of the eyes and mouth in thatcherised faces is hardly detectable. This effect allows featural and holistic information to be dissociated and was used to test specific face-processing hypotheses. In inverted thatcherised faces, the cardinal features are already correctly oriented, whereas in undistorted faces, the whole Gestalt is coherent but all information is disoriented. Experiment 1 and experiment 3 revealed that, for inverted faces, featural information processing precedes holistic information. Moreover, the processing of contextual information is necessary to process local featural information within a short presentation time (26 ms). Furthermore, for upright faces, holistic information seems to be available faster than for inverted faces (experiment 2). These differences in processing inverted and upright faces presumably cause the differential importance of featural and holistic information for inverted and upright faces.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 699 ◽  
Author(s):  
Carmen Moret-Tatay ◽  
Inmaculada Baixauli-Fortea ◽  
M. Dolores Grau Sevilla ◽  
Tatiana Quarti Irigaray

Face recognition is located in the fusiform gyrus, which is also related to other tasks such word recognition. Although these two processes have several similarities, there are remarkable differences that include a vast range of approaches, which results from different groups of participants. This research aims to examine how the word-processing system processes faces at different moments and vice versa. Two experiments were carried out. Experiment 1 allowed us to examine the classical discrimination task, while Experiment 2 allowed us to examine very early moments of discrimination. In the first experiment, 20 Spanish University students volunteered to participate. Secondly, a sample of 60 participants from different nationalities volunteered to take part in Experiment 2. Furthermore, the role of sex and place of origin were considered in Experiment 1. No differences between men and women were found in Experiment 1, nor between conditions. However, Experiment 2 depicted shorter latencies for faces than word names, as well as a higher masked repetition priming effect for word identities and word names preceded by faces. Emerging methodologies in the field might help us to better understand the relationship among these two processes. For this reason, a network analysis approach was carried out, depicting sub-communities of nodes related to face or word name recognition, which were replicated across different groups of participants. Bootstrap inferences are proposed to account for variability in estimating the probabilities in the current samples. This supports that both processes are related to early moments of recognition, and rather than being independent, they might be bilaterally distributed with some expert specializations or preferences.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad Sajid ◽  
Nouman Ali ◽  
Saadat Hanif Dar ◽  
Naeem Iqbal Ratyal ◽  
Asif Raza Butt ◽  
...  

Recently, face datasets containing celebrities photos with facial makeup are growing at exponential rates, making their recognition very challenging. Existing face recognition methods rely on feature extraction and reference reranking to improve the performance. However face images with facial makeup carry inherent ambiguity due to artificial colors, shading, contouring, and varying skin tones, making recognition task more difficult. The problem becomes more confound as the makeup alters the bilateral size and symmetry of the certain face components such as eyes and lips affecting the distinctiveness of faces. The ambiguity becomes even worse when different days bring different facial makeup for celebrities owing to the context of interpersonal situations and current societal makeup trends. To cope with these artificial effects, we propose to use a deep convolutional neural network (dCNN) using augmented face dataset to extract discriminative features from face images containing synthetic makeup variations. The augmented dataset containing original face images and those with synthetic make up variations allows dCNN to learn face features in a variety of facial makeup. We also evaluate the role of partial and full makeup in face images to improve the recognition performance. The experimental results on two challenging face datasets show that the proposed approach can compete with the state of the art.


2018 ◽  
Vol 24 (6) ◽  
pp. 582-608 ◽  
Author(s):  
Fernando M. Ramírez

Viewpoint-invariant face recognition is thought to be subserved by a distributed network of occipitotemporal face-selective areas that, except for the human anterior temporal lobe, have been shown to also contain face-orientation information. This review begins by highlighting the importance of bilateral symmetry for viewpoint-invariant recognition and face-orientation perception. Then, monkey electrophysiological evidence is surveyed describing key tuning properties of face-selective neurons—including neurons bimodally tuned to mirror-symmetric face-views—followed by studies combining functional magnetic resonance imaging (fMRI) and multivariate pattern analyses to probe the representation of face-orientation and identity information in humans. Altogether, neuroimaging studies suggest that face-identity is gradually disentangled from face-orientation information along the ventral visual processing stream. The evidence seems to diverge, however, regarding the prevalent form of tuning of neural populations in human face-selective areas. In this context, caveats possibly leading to erroneous inferences regarding mirror-symmetric coding are exposed, including the need to distinguish angular from Euclidean distances when interpreting multivariate pattern analyses. On this basis, this review argues that evidence from the fusiform face area is best explained by a view-sensitive code reflecting head angular disparity, consistent with a role of this area in face-orientation perception. Finally, the importance is stressed of explicit models relating neural properties to large-scale signals.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 118-118
Author(s):  
N P Costen ◽  
T Kato ◽  
I G Craw ◽  
S Akamatsu

The composite effect, where the recognition of the upper half of a face is disrupted by a discrepant lower half relative to an isolated half-face, without a corresponding effect for vertical half-faces, provides a ready method of investigating configural information in face recognition. In previous studies purely photographic techniques have been used for composite construction. We investigated the effects of more face-like stimuli, constructed by morphing techniques. Subjects were trained to identify frontal Japanese faces, and tested on recognition on marked upper, lower, left, and right halves, both as half-faces and with distractors. While response accuracy for the upper and lower composites was lower than those for the relevant halves, there was no such effect for the right - left composites. A familiarity design was used in the second experiment to replicate this result. In the third experiment quarter-faces (top left - bottom right facial quadrants) were used to control for the information present. We found a strong composite effect for the right - left composites, and weaker ones for the top - bottom and quarter composites. In the fourth experiment we examined whether this effect was dependent on the presence of the quarter-composites by presenting them in a second block but found no effect of this manipulation. It thus appears that although there is a composite effect with faces composed in a shape-free manner, this effect is unstable. Under certain circumstances subjects may convert from a top - bottom relational processing strategy to a right - left strategy. The information used, even with a constant task, is dependent upon the variability of the images involved.


Sign in / Sign up

Export Citation Format

Share Document