Laboratory methods of estimating potentially mineralizable nitrogen in organic potting mixes. II. Development of near infrared reflectance spectroscopy method

2001 ◽  
Vol 32 (17-18) ◽  
pp. 2769-2781 ◽  
Author(s):  
Graham D. Smith ◽  
Andrew Jervis ◽  
Margi Lennartsson ◽  
William F. Bourne
2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 303-303
Author(s):  
Jordan N Moody ◽  
Reid Redden ◽  
Faron A Pfeiffer ◽  
Ronald Pope ◽  
John W Walker

Abstract Lab scoured yield (LSY) is a major indicator of wool quality. LSY is used for the valuation of wool in commercial settings and can be used by growers as selection criteria for breeding stock. Current laboratory methods for LSY are costly and labor intensive. Evaluation of fleece core samples using Near-Infrared Reflectance Spectroscopy (NIR) may present an efficient, cost-effective alternative to predict LSY. Lamb and yearling fleece core samples from flocks originating from Texas were scanned on a FOSS 6500 spectrometer. Constituent data were obtained from the Bill Sims Wool and Mohair Laboratory using ASTM methodology. LSY ranged from 48–68%. Spectral data were pretreated with a 14 nm moving average and Savitsky-Golay 2nd derivative. Eight outlier spectra were removed. Samples were parsed from the center of the distribution to minimize the Dunn effect creating calibration (n = 108) and test (n = 41) sets. Calibrations were executed using a partial least squares regression on spectra from 1100 to 2492 nm. Test set calibration statistics for LSY were: r2=0.64, RMSE=3.39, and slope=0.91. Independent validation statistics for LSY using spectra for different years were: r2=0.33, RMSE=3.69, and slope=0.29. RMSE for independent validation and lab methods on side samples are similar. Between flock independent validations were less promising. Accuracy of laboratory methods for estimating yield is 2 percentage units. NIRS calibrations can be improved by developing calibration sets with a uniform distribution, which can be difficult within flocks because of the small number of fleeces in the tails of the distribution. These data demonstrate that when calibration and test sets are developed such that test samples are drawn from the calibration population, NIR is a reliable predictor of LSY. However, when test samples are drawn from populations dissimilar to the calibration set, reliability of NIR predictions are greatly reduced.


2004 ◽  
Vol 142 (3) ◽  
pp. 335-343 ◽  
Author(s):  
A. MORON ◽  
D. COZZOLINO

Visible (VIS) and near-infrared reflectance spectroscopy (NIRS) combined with multivariate data analysis was used to predict potentially mineralizable nitrogen (PMN) and nitrogen in particulate organic matter fractions (PSOM-N). Soil samples from a long-term experiment (n=24) as well as soils under commercial management (n=160) in Uruguay (South America) were analysed. Samples were scanned in a NIRS 6500 monochromator instrument by reflectance (400–2500 nm). Modified partial least square regression (MPLS) and cross validation were used to develop the calibration models between NIRS data and reference values. NIRS calibration models gave a coefficient of determination for the calibration (R2CAL)>0·80 and the standard deviation of reference data to standard error in cross validation (RPD) ratio ranging from 2 to 5·5 for the variables evaluated. The results obtained in the study showed that NIRS could have the potential to determine PMN and PSOM-N fractions in soils under different agronomic conditions. However, the relatively limited number of samples led us to be cautious in terms of conclusions and to extend the results of this work to similar conditions.


2021 ◽  
pp. 096703352110075
Author(s):  
Adou Emmanuel Ehounou ◽  
Denis Cornet ◽  
Lucienne Desfontaines ◽  
Carine Marie-Magdeleine ◽  
Erick Maledon ◽  
...  

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.


Sign in / Sign up

Export Citation Format

Share Document