PSV-15 Using near infrared reflectance spectroscopy to predict lab scoured yield in Rambouillet sheep

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 303-303
Author(s):  
Jordan N Moody ◽  
Reid Redden ◽  
Faron A Pfeiffer ◽  
Ronald Pope ◽  
John W Walker

Abstract Lab scoured yield (LSY) is a major indicator of wool quality. LSY is used for the valuation of wool in commercial settings and can be used by growers as selection criteria for breeding stock. Current laboratory methods for LSY are costly and labor intensive. Evaluation of fleece core samples using Near-Infrared Reflectance Spectroscopy (NIR) may present an efficient, cost-effective alternative to predict LSY. Lamb and yearling fleece core samples from flocks originating from Texas were scanned on a FOSS 6500 spectrometer. Constituent data were obtained from the Bill Sims Wool and Mohair Laboratory using ASTM methodology. LSY ranged from 48–68%. Spectral data were pretreated with a 14 nm moving average and Savitsky-Golay 2nd derivative. Eight outlier spectra were removed. Samples were parsed from the center of the distribution to minimize the Dunn effect creating calibration (n = 108) and test (n = 41) sets. Calibrations were executed using a partial least squares regression on spectra from 1100 to 2492 nm. Test set calibration statistics for LSY were: r2=0.64, RMSE=3.39, and slope=0.91. Independent validation statistics for LSY using spectra for different years were: r2=0.33, RMSE=3.69, and slope=0.29. RMSE for independent validation and lab methods on side samples are similar. Between flock independent validations were less promising. Accuracy of laboratory methods for estimating yield is 2 percentage units. NIRS calibrations can be improved by developing calibration sets with a uniform distribution, which can be difficult within flocks because of the small number of fleeces in the tails of the distribution. These data demonstrate that when calibration and test sets are developed such that test samples are drawn from the calibration population, NIR is a reliable predictor of LSY. However, when test samples are drawn from populations dissimilar to the calibration set, reliability of NIR predictions are greatly reduced.

2009 ◽  
Vol 89 (5) ◽  
pp. 579-587 ◽  
Author(s):  
C Nduwamungu ◽  
N Ziadi ◽  
L -É Parent ◽  
G F Tremblay

Near-infrared reflectance spectroscopy (NIRS) is a cost-effective and environmentally friendly technique of soil analysis that is particularly advantageous in intensive soil sampling and soil nutrient management as well. This study evaluated the potential of NIRS for predicting P, K, Ca, Mg, Cu, Zn, Mn, Fe, and Al extracted by Mehlich 3. We used 150 air-dried samples collected from a 15-ha site dominated by Orthic Humic Gleysol and Gleyed Dystric Brunisol soils. Calibration equations were developed using modified partial least squares regression. The accuracy of NIRS prediction was evaluated using the coefficient of determination (R2), the ratio of performance deviation (RPD), and the ratio of error range (RER). Reliable calibrations were found for Ca, Cu, and Mg (R2 ≥ 0.7, RPD ≥ 1.75, and RER ≥ 8). Less-reliable calibrations were found for Al, Fe, K, Mn, P, and Zn (R2 < 0.7, RPD < 1.75, and RER < 8). In the validation with independent samples, acceptable regression coefficients (i.e., 0.8 ≤ slope ≤ 1.2) were only found for Ca, Mg, and Mn. We presumed that the pH of the Mehlich 3 extractant (2.5 ± 0.1) may affect the solubility of most of these nutrients, regardless the soil texture and, consequently, the potential of NIRS to predict them. The more a nutrient was correlated to clay content, the more it was likely predictable by NIRS. The prediction models obtained for Al, Ca, Cu, Fe, K, Mg, and Mn could still be used for screening purposes in cases where high accuracy is not required. These NIRS prediction models should be validated across larger geographic areas of geological homogeneity. Key words: Soil analysis, Mehlich 3, near-infrared reflectance spectroscopy, calibration


2021 ◽  
pp. 096703352110075
Author(s):  
Adou Emmanuel Ehounou ◽  
Denis Cornet ◽  
Lucienne Desfontaines ◽  
Carine Marie-Magdeleine ◽  
Erick Maledon ◽  
...  

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.


Sign in / Sign up

Export Citation Format

Share Document