scholarly journals An efficient method for introducing macromolecules into living cells.

1985 ◽  
Vol 101 (1) ◽  
pp. 19-27 ◽  
Author(s):  
S J Doxsey ◽  
J Sambrook ◽  
A Helenius ◽  
J White

The hemagglutinin (HA) of influenza virus was used to obtain efficient and rapid bulk delivery of antibodies and horseradish peroxidase (HRP) into the cytoplasm of living tissue culture cells. By exploiting HA's efficient cell surface expression, its high affinity for erythrocytes, and its acid-dependent membrane fusion activity, a novel delivery method was developed. The approach is unique in that the mediator of both binding and fusion (the HA) is present on the surfaces of the target cells. A recently developed 3T3 cell line which permanently expresses HA, Madin-Darby canine kidney cells infected with influenza virus, and CV-1 cells infected with a simian virus 40 vector carrying the HA gene were used as recipient cells. Protein-loaded erythrocytes were bound to the HA on the cell surface and a brief drop in pH to 5.0 was used to trigger HA's fusion activity and hence delivery. About 3 to 8 erythrocytes fused per 3T3 and CV-1 cell, respectively, and 75-95% of the cells received IgG or HRP. Quantitative analysis showed that 1.8 X 10(8) molecules of HRP and 1.4 X 10(7) IgG molecules were delivered per CV-1 cell and 6.2 X 10(7) HRP molecules per 3T3 cell. Cell viability, as judged by methionine incorporation into protein and cell growth and division, was not impaired. Electron and fluorescence microscopy showed that the fused erythrocyte membranes remained as discrete domains in the cell's plasma membrane. The method is simple, reliable, and nonlytic. The ability to simultaneously and rapidly deliver impermeable substances into large numbers of cells will permit biochemical analysis of the fate and effect of a variety of delivered molecules.

1998 ◽  
Vol 72 (5) ◽  
pp. 3554-3559 ◽  
Author(s):  
Masanobu Ohuchi ◽  
Christian Fischer ◽  
Reiko Ohuchi ◽  
Astrid Herwig ◽  
Hans-Dieter Klenk

ABSTRACT The hemagglutinin (HA) of fowl plague virus was lengthened and shortened by site-specific mutagenesis at the cytoplasmic tail, and the effects of these modifications on HA functions were analyzed after expression from a simian virus 40 vector. Elongation of the tail by the addition of one to six histidine (His) residues did not interfere with intracellular transport, glycosylation, proteolytic cleavage, acylation, cell surface expression, and hemadsorption. However, the ability to induce syncytia at a low pH decreased dramatically depending on the number of His residues added. Partial fusion (hemifusion), assayed by fluorescence transfer from octadecylrhodamine-labeled erythrocyte membranes, was also reduced, but even with the mutant carrying six His residues, significant transfer was observed. However, when the formation of fusion pores was examined with hydrophilic fluorescent calcein, transfer from erythrocytes to HA-expressing cells was not observed with the mutant carrying six histidine residues. The addition of different amino acids to the cytoplasmic tail of HA caused an inhibitory effect similar to that caused by the addition of His. On the other hand, a mutant lacking the cytoplasmic tail was still able to fuse at a reduced level. These results demonstrate that elongation of the cytoplasmic tail interferes with the formation and enlargement of fusion pores. Thus, the length of the cytoplasmic tail plays a critical role in the fusion process.


2018 ◽  
Vol 45 (5) ◽  
pp. 2071-2085 ◽  
Author(s):  
Maria Agthe ◽  
Yvonne Garbers ◽  
Joachim Grötzinger ◽  
Christoph Garbers

Background/Aims: The cytokine interleukin-11 (IL-11) has important pro- and anti-inflammatory functions. It activates its target cells through binding to the IL-11 receptor (IL-11R), and the IL-11/IL-11R complex recruits a homodimer of glycoprotein 130 (gp130). N-linked glycosylation, a post-translational modification where complex oligosaccharides are attached to the side chain of asparagine residues, is often important for stability, folding and biological function of cytokine receptors. Methods: We generated different IL-11R mutants via site-directed mutagenesis and analyzed them in different cell lines via Western blot, flow cytometry, confocal microscopy and proliferation assays. Results: In this study, we identified two functional N-glycosylation sites in the D2 domain of the IL-11R at N127 and N194. While mutation of N127Q only slightly affects cell surface expression of the IL-11R, mutation of N194Q broadly prevents IL-11R appearance at the plasma membrane. Accordingly, IL-11R mutants lacking N194 are retained within the ER, whereas the N127 mutant is transported through the Golgi complex to the cell surface, uncovering a differential role of the two N-glycan sequons for IL-11R maturation. Interestingly, IL-11R mutants devoid of one or both N-glycans are still biologically active. Furthermore, the IL-11RN127Q/N194Q mutant shows no inducible shedding by ADAM10, but is rather constitutively released into the supernatant. Conclusion: Our results show that the two N-glycosylation sites differentially influence stability and proteolytic processing of the IL-11R, but that N-linked glycosylation is not a prerequisite for IL-11 signaling.


Blood ◽  
2010 ◽  
Vol 115 (7) ◽  
pp. 1354-1363 ◽  
Author(s):  
Jonathan Richard ◽  
Sardar Sindhu ◽  
Tram N. Q. Pham ◽  
Jean-Philippe Belzile ◽  
Éric A. Cohen

AbstractHIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor, including ULBP-1, -2, and -3, but not MICA or MICB, in infected cells both in vitro and in vivo. However, the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G2 cell-cycle arrest, conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4+ T lymphocytes by a process that is Vpr dependent. Importantly, Vpr enhanced the susceptibility of HIV-1–infected cells to NK cell–mediated killing. Strikingly, Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell–mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells, suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall, these results indicate that Vpr is a key determinant responsible for HIV-1–induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1–induced CD4+ T-lymphocyte depletion but may also take part in HIV-1–induced NK-cell dysfunction.


2004 ◽  
Vol 85 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Patricia Devaux ◽  
Dale Christiansen ◽  
Sébastien Plumet ◽  
Denis Gerlier

Measles virus (MV)-infected cells are activators of the alternative human complement pathway, resulting in high deposition of C3b on the cell surface. Activation was observed independent of whether CD46 was used as a cellular receptor and did not correlate with CD46 down-regulation. The virus itself was an activator of the alternative pathway and was covered by C3b/C3bi, resulting in some loss in infectivity without loss of virus binding to target cells. The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F–C3b complexes were formed. The underlying activation mechanism was not related to any decrease in cell surface expression of the complement regulators CD46 and CD55. The C3b/C3bi coating of MV-infected cells and virus should ensure enhanced targeting of MV antigens to the immune system, through binding to complement receptors.


2002 ◽  
Vol 115 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Hadi Al-Hasani ◽  
Raghu K. Kunamneni ◽  
Kevin Dawson ◽  
Cynthia S. Hinck ◽  
Dirk Müller-Wieland ◽  
...  

In insulin target cells, the predominantly expressed glucose transporter isoform GLUT4 recycles between distinct intracellular compartments and the plasma membrane. To characterize putative targeting signals within GLUT4 in a physiologically relevant cell type, we have analyzed the trafficking of hemagglutinin (HA)-epitope-tagged GLUT4 mutants in transiently transfected primary rat adipose cells. Mutation of the C-terminal dileucine motif (LL489/90) did not affect the cell-surface expression of HA-GLUT4. However, mutation of the N-terminal phenylalanine-based targeting sequence (F5) resulted in substantial increases, whereas deletion of 37 or 28 of the 44 C-terminal residues led to substantial decreases in cell-surface HA-GLUT4 in both the basal and insulin-stimulated states. Studies with wortmannin and coexpression of a dominant-negative dynamin GTPase mutant indicate that these effects appear to be primarily due to decreases and increases, respectively, in the rate of endocytosis. Yeast two-hybrid analyses revealed that the N-terminal phenylalanine-based targeting signal in GLUT4 constitutes a binding site for medium chain adaptins μ1, μ2, and μ3A, implicating a role of this motif in the targeting of GLUT4 to clathrin-coated vesicles.


1989 ◽  
Vol 108 (2) ◽  
pp. 355-365 ◽  
Author(s):  
J Hearing ◽  
M J Gething ◽  
J Sambrook

In the preceding paper (Hearing, J., E. Hunter, L. Rodgers, M.-J. Gething, and J. Sambrook. 1989. J. Cell Biol. 108:339-353) we described the isolation and initial characterization of seven Chinese hamster ovary cell lines that are temperature conditional for the cell-surface expression of influenza virus hemagglutinin (HA) and other integral membrane glycoproteins. Two of these cell lines appeared to be defective for the synthesis and/or addition of mannose-rich oligosaccharide chains to nascent glycoproteins. In this paper we show that at both 32 and 39 degrees C in two mutant cell lines accumulate a truncated version, Man5GlcNAc2, of the normal lipid-linked precursor oligosaccharide, Glc3Man9GlcNAc2. This is possibly due to a defect in the synthesis of dolichol phosphate because in vitro assays indicate that the mutant cells are not deficient in mannosylphosphoryldolichol synthase at either temperature. A mixture of truncated and complete oligosaccharide chains was transferred to newly synthesized glycoproteins at both the permissive and restrictive temperatures. Both mutant cell lines exhibited altered sensitivity to cytotoxic plant lectins when grown at 32 degrees C, indicating that cellular glycoproteins bearing abnormal oligosaccharide chains were transported to the cell surface at the permissive temperature. Although glycosylation was defective at both 32 and 39 degrees C, the cell lines were temperature conditional for growth, suggesting that cellular glycoproteins were adversely affected by the glycosylation defect at the elevated temperature. The temperature-conditional expression of HA on the cell surface was shown to be due to impairment at 39 degrees C of the folding, trimerization, and stability of HA molecules containing truncated oligosaccharide chains.


Sign in / Sign up

Export Citation Format

Share Document