fusion pores
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 21)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Josh Pierson ◽  
Yeon-Kyun Shin

In the neuron, neurotransmitter release is an essential function that must be both consistent and tightly regulated. The continuity of neurotransmitter release is dependent in large part on vesicle recycling. However, the protein factors that dictate the vesicle recycling pathway are elusive. Here, we use a single vesicle-to-supported bilayer fusion assay to investigate complexin-1 (cpx1)’s influence on SNARE-dependent fusion pore expansion. With total internal reflection (TIR) microscopy using a 10 kDa polymer fluorescence probe, we are able to detect the presence of large fusion pores. With cpx1, however, we observe a significant increase of the probability of the formation of large fusion pores. The domain deletion analysis reveals that the SNARE-binding core domain of cpx1 is mainly responsible for its ability to promote the fusion pore expansion. In addition, the results show that cpx1 helps the pore to expand larger, which results in faster release of the polymer probe. Thus, the results demonstrate a reciprocal relationship between event duration and the size of the fusion pore. Based on the data, a hypothetical mechanistic model can be deduced. In this mechanistic model, the cpx1 binding stabilizes the four-helix bundle structure of the SNARE core throughout the fusion pore expansion, whereby the highly curved bilayer within the fusion pore is stabilized by the SNARE pins.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009488
Author(s):  
Ruben M. Markosyan ◽  
Mariana Marin ◽  
You Zhang ◽  
Fredric S. Cohen ◽  
Gregory B. Melikyan

Arenavirus entry into host cells occurs through a low pH-dependent fusion with late endosomes that is mediated by the viral glycoprotein complex (GPC). The mechanisms of GPC-mediated membrane fusion and of virus targeting to late endosomes are not well understood. To gain insights into arenavirus fusion, we examined cell-cell fusion induced by the Old World Lassa virus (LASV) GPC complex. LASV GPC-mediated cell fusion is more efficient and occurs at higher pH with target cells expressing human LAMP1 compared to cells lacking this cognate receptor. However, human LAMP1 is not absolutely required for cell-cell fusion or LASV entry. We found that GPC-induced fusion progresses through the same lipid intermediates as fusion mediated by other viral glycoproteins–a lipid curvature-sensitive intermediate upstream of hemifusion and a hemifusion intermediate downstream of acid-dependent steps that can be arrested in the cold. Importantly, GPC-mediated fusion and LASV pseudovirus entry are specifically augmented by an anionic lipid, bis(monoacylglycero)phosphate (BMP), which is highly enriched in late endosomes. This lipid also specifically promotes cell fusion mediated by Junin virus GPC, an unrelated New World arenavirus. We show that BMP promotes late steps of LASV fusion downstream of hemifusion–the formation and enlargement of fusion pores. The BMP-dependence of post-hemifusion stages of arenavirus fusion suggests that these viruses evolved to use this lipid as a cofactor to selectively fuse with late endosomes.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Olivia Muriel ◽  
Laetitia Michon ◽  
Wanda Kukulski ◽  
Sophie G. Martin

Cell–cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h− isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h− cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h− cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h− cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell–cell fusion.


Cell Reports ◽  
2021 ◽  
Vol 36 (8) ◽  
pp. 109580
Author(s):  
Joannalyn B. Delacruz ◽  
Satyan Sharma ◽  
Shailendra Singh Rathore ◽  
Meng Huang ◽  
Joan S. Lenz ◽  
...  
Keyword(s):  

Author(s):  
Ryan Khounlo ◽  
Brenden J. D. Hawk ◽  
Tung-Mei Khu ◽  
Gyeongji Yoo ◽  
Nam Ki Lee ◽  
...  

SNARE-dependent membrane fusion is essential for neurotransmitter release at the synapse. Recently, α-synuclein has emerged as an important regulator for membrane fusion. Misfolded α-synuclein oligomers are potent fusion inhibitors. However, the function of normal α-synuclein has been elusive. Here, we use the single vesicle-to-supported bilayer fusion assay to dissect the role of α-synuclein in membrane fusion. The assay employs 10 kD Rhodamine B-dextran as the content probe that can detect fusion pores larger than ∼6 nm. We find that the SNARE complex alone is inefficient at dilating fusion pores. However, α-synuclein dramatically increases the probability as well as the duration of large pores. When the SNARE-interacting C-terminal region of α-synuclein was truncated, the mutant behaves the same as the wild-type. However, the double proline mutants compromising membrane-binding show significantly reduced effects on fusion pore expansion. Thus, our results suggest that α-synuclein stimulates fusion pore expansion specifically through its membrane binding.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Zhenyong Wu ◽  
Nadiv Dharan ◽  
Zachary A McDargh ◽  
Sathish Thiyagarajan ◽  
Ben O'Shaughnessy ◽  
...  

All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1995
Author(s):  
Mirko Sinico ◽  
Suraj Dinkar Jadhav ◽  
Ann Witvrouw ◽  
Kim Vanmeensel ◽  
Wim Dewulf

Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.


2021 ◽  
Vol 153 (5) ◽  
Author(s):  
Chung-Wei Chiang ◽  
Wen-Chi Shu ◽  
Jun Wan ◽  
Beth A. Weaver ◽  
Meyer B. Jackson

Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.


2021 ◽  
pp. JN-RM-2833-20
Author(s):  
Che-Wei Chang ◽  
Yu-Tien Hsiao ◽  
Meyer B. Jackson

Sign in / Sign up

Export Citation Format

Share Document