scholarly journals Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells.

1987 ◽  
Vol 105 (4) ◽  
pp. 1613-1622 ◽  
Author(s):  
R DeBiasio ◽  
G R Bright ◽  
L A Ernst ◽  
A S Waggoner ◽  
D L Taylor

Cellular functions involve the temporal and spatial interplay of ions, metabolites, macromolecules, and organelles. To define the mechanisms responsible for completing cellular functions, we used methods that can yield both temporal and spatial information on multiple physiological parameters and chemical components in the same cell. We demonstrated that the combined use of selected fluorescent probes, fluorescence microscopy, and imaging methods can yield information on at least five separate cellular parameters and components in the same living cell. Furthermore, the temporal and spatial dynamics of each of the parameters and/or components can be correlated with one or more of the others. Five parameters were investigated by spectrally isolating defined regions of the ultraviolet, visible, and near-infrared spectrum based on five distinct fluorescent probes. The parameters included nuclei (Hoechst 33342), mitochondria (diIC1-[5] ), endosomes (lissamine rhodamine B-dextran), actin (fluorescein), and the cell volume Cy7-dextran). Nonmotile, confluent Swiss 3T3 cells did not show any detectable polarity of cell shape, or distribution of nuclei, endosomes, or mitochondria. These cells also organized a large percentage of the actin into stress fibers. In contrast, cells migrating into an in vitro wound exhibited at least two stages of reorganization of organelles and cytoplasm. During the first 3 h after wounding, the cells along the edge of the wound assumed a polarized shape, carried the nuclei in the rear of the cells, excluded endosomes and mitochondria from the lamellipodia, and lost most of the highly organized stress fibers. The cell showed a dramatic change between 3 and 7 h after producing the wound. The cells became highly elongated and motile; both the endosomes and the mitochondria penetrated into the lamellipodia, while the nuclei remained in the rear and the actin remained in less organized structures. Defining the temporal and spatial dynamics and interplay of ions, contractile proteins, lipids, regulatory proteins, metabolites, and organelles should lead to an understanding of the molecular basis of cell migration, as well as other cellular functions.

Author(s):  
D. Lansing Taylor

There has been a renaissance and revolution in the use of light microscopy in the biomedical sciences. The renaissance has been due to the importance of studying the temporal and spatial dynamics of ions, metabolites and macromolecules in living cells and tissues. The revolution has been due to the integration of developments in molecular biology, fluorescent probe chemistry, machine vision, and imaging technology. It is now possible to use the living cell as a microcuvette and to explore the chemical and molecular dynamics responsible for cellular functions.We have been investigating the formation, transport and contraction of stress fibers in Swiss 3T3 cells. Fluorescent analogs of actin, myosin, vinculin and profilin have been investigated in serum deprived cells before, during and after stimulation with thrombin. The activities of these components of the actin-based cytoskeleton have been quantified using time-lapse imaging, fluorescence redistribution after photobleaching, video-enhanced contrast and reflection interference contrast microscopy.


1992 ◽  
Vol 12 (8) ◽  
pp. 3407-3414
Author(s):  
Y Yoshida ◽  
M Kawata ◽  
Y Miura ◽  
T Musha ◽  
T Sasaki ◽  
...  

Microinjection of either Ki-rasVal-12 p21 or the GDP-bound form of Ki-ras p21 plus smg GDP dissociation stimulator (GDS), a stimulatory GDP/GTP exchange protein for Ki-ras p21, smg/rap1/Krev-1 p21, and rho p21, into quiescent Swiss 3T3 cells induced DNA synthesis irrespective of the presence or absence of insulin. The guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of smg p21B or the GDP-bound form of smg p21B plus smg GDS also induced DNA synthesis but only in the presence of insulin. Either the GDP-bound form of Ki-ras p21 or the same form of smg p21B alone was inactive, but smg GDS alone was slightly active only in the presence of insulin. The morphology of the cells was analyzed by scanning electron, phase-contrast, and confocal laser scanning microscopies. Ki-rasVal-12 p21 induced membrane ruffling irrespective of the presence or absence of insulin. The GTP gamma S-bound form of smg p21B showed the same effect only in the presence of insulin. Either the GDP-bound form of Ki-ras p21, the same form of smg p21B, or smg GDS alone was inactive. Upon microinjection of Ki-rasVal-12 p21, stress fibers markedly decreased and the cells became round and piled up. In contrast, upon microinjection of the GTP gamma S-bound form of smg p21B, stress fibers did not markedly decrease and the cells neither became round nor piled up. These results indicate that both ras p21 and smg p21 are mitogenic in Swiss 3T3 cells but that their actions are slightly different.


1987 ◽  
Vol 104 (4) ◽  
pp. 1019-1033 ◽  
Author(s):  
GR Bright ◽  
GW Fisher ◽  
J Rogowska ◽  
DL Taylor

Fluorescence ratio imaging microscopy (Tanasugarn, L., P. McNeil, G. Reynolds, and D. L. Taylor, 1984, J. Cell Biol., 98:717-724) has been used to measure the spatial variations in cytoplasmic pH of individual quiescent and nonquiescent Swiss 3T3 cells. Fundamental issues of ratio imaging that permit precise and accurate temporal and spatial measurements have been addressed including: excitation light levels, lamp operation, intracellular probe concentrations, methods of threshold selection, photobleaching, and spatial signal-to-noise ratio measurements. Subcellular measurements can be measured accurately (less than 3% coefficient of variation) in an area of 3.65 microns 2 with the present imaging system. Quiescent Swiss 3T3 cells have a measured cytoplasmic pH of 7.09 (0.01 SEM), whereas nonquiescent cells have a pH of 7.35 (0.01 SEM) in the presence of bicarbonate buffer. A unimodal distribution of mean cytoplasmic pH in both quiescent and nonquiescent cells was identified from populations of cells measured on a cell by cell basis. Therefore, unlike earlier studies based on cell population averages, it can be stated that cells in each population exhibit a narrow range of cytoplasmic pH. However, the mean cytoplasmic pH can change based on the physiological state of the cells. In addition, there appears to be little, if any, spatial variation in cytoplasmic pH in either quiescent or nonquiescent Swiss 3T3 cells. The pH within the nucleus was always the same as the surrounding cytoplasm. These values will serve as a reference point for investigating the role of temporal and spatial variations in cytoplasmic pH in a variety of cellular processes including growth control and cell movement.


1992 ◽  
Vol 12 (8) ◽  
pp. 3407-3414 ◽  
Author(s):  
Y Yoshida ◽  
M Kawata ◽  
Y Miura ◽  
T Musha ◽  
T Sasaki ◽  
...  

Microinjection of either Ki-rasVal-12 p21 or the GDP-bound form of Ki-ras p21 plus smg GDP dissociation stimulator (GDS), a stimulatory GDP/GTP exchange protein for Ki-ras p21, smg/rap1/Krev-1 p21, and rho p21, into quiescent Swiss 3T3 cells induced DNA synthesis irrespective of the presence or absence of insulin. The guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of smg p21B or the GDP-bound form of smg p21B plus smg GDS also induced DNA synthesis but only in the presence of insulin. Either the GDP-bound form of Ki-ras p21 or the same form of smg p21B alone was inactive, but smg GDS alone was slightly active only in the presence of insulin. The morphology of the cells was analyzed by scanning electron, phase-contrast, and confocal laser scanning microscopies. Ki-rasVal-12 p21 induced membrane ruffling irrespective of the presence or absence of insulin. The GTP gamma S-bound form of smg p21B showed the same effect only in the presence of insulin. Either the GDP-bound form of Ki-ras p21, the same form of smg p21B, or smg GDS alone was inactive. Upon microinjection of Ki-rasVal-12 p21, stress fibers markedly decreased and the cells became round and piled up. In contrast, upon microinjection of the GTP gamma S-bound form of smg p21B, stress fibers did not markedly decrease and the cells neither became round nor piled up. These results indicate that both ras p21 and smg p21 are mitogenic in Swiss 3T3 cells but that their actions are slightly different.


2017 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document