scholarly journals Microtubule dynamics and chromosome motion visualized in living anaphase cells.

1988 ◽  
Vol 106 (4) ◽  
pp. 1185-1192 ◽  
Author(s):  
G J Gorbsky ◽  
P J Sammak ◽  
G G Borisy

Chromosome segregation in most animal cells is brought about through two events: the movement of the chromosomes to the poles (anaphase A) and the movement of the poles away from each other (anaphase B). Essential to an understanding of the mechanism of mitosis is information on the relative movements of components of the spindle and identification of sites of subunit loss from shortening microtubules. Through use of tubulin derivatized with X-rhodamine, photobleaching, and digital imaging microscopy of living cells, we directly determined the relative movements of poles, chromosomes, and a marked domain on kinetochore fibers during anaphase. During chromosome movement and pole-pole separation, the marked domain did not move significantly with respect to the near pole. Therefore, the kinetochore microtubules were shortened by the loss of subunits at the kinetochore, although a small amount of subunit loss elsewhere was not excluded. In anaphase A, chromosomes moved on kinetochore microtubules that remained stationary with respect to the near pole. In anaphase B, the kinetochore fiber microtubules accompanied the near pole in its movement away from the opposite pole. These results eliminate models of anaphase in which microtubules are thought to be traction elements that are drawn to and depolymerized at the pole. Our results are compatible with models of anaphase in which the kinetochore fiber microtubules remain anchored at the pole and in which microtubule dynamics are centered at the kinetochore.

2000 ◽  
Vol 6 (S2) ◽  
pp. 80-81
Author(s):  
L. Cassimeris ◽  
C. Spittle ◽  
M. Kratzer

The mitotic spindle is responsible for chromosome movement during mitosis. It is composed of a dynamic array of microtubules and associated proteins whose assembly and constant turnover are required for both spindle formation and chromosome movement. Because microtubule assembly and turnover are necessary for chromosome segregation, we are studying how cells regulate microtubule dynamics. Microtubules are polarized polymers composed of tubulin subunits; they assemble by a process of dynamic instability where individual microtubules exist in persistent phases of elongation or rapid shortening with abrupt transitions between these two states. The switch from elongation to shortening is termed catastrophe, and the switch from shortening to elongation, rescue. Although dynamic instability is an intrinsic property of the tubulin subunits, cells use associated proteins to both speed elongation (∼ 10 fold) and regulate transitions.The only protein isolated to date capable of promoting fast polymerization consistent with rates in vivo is XMAP215, a 215 kD protein from Xenopus eggs.


2019 ◽  
Vol 30 (19) ◽  
pp. 2503-2514 ◽  
Author(s):  
Che-Hang Yu ◽  
Stefanie Redemann ◽  
Hai-Yin Wu ◽  
Robert Kiewisz ◽  
Tae Yeon Yoo ◽  
...  

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.


2019 ◽  
Author(s):  
Che-Hang Yu ◽  
Stefanie Redemann ◽  
Hai-Yin Wu ◽  
Robert Kiewisz ◽  
Tae Yeon Yoo ◽  
...  

AbstractSpindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, i.e. on the region between chromosomes and poles. In comparison, microtubules in the central spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central spindle microtubules during chromosome segregation in human mitotic spindles, and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move towards spindle poles. In these systems, damaging central spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central spindle microtubules during chromosome segregation in diverse spindles, and suggest that central spindle microtubules and chromosomes are strongly coupled in anaphase.


2002 ◽  
Vol 115 (5) ◽  
pp. 931-940 ◽  
Author(s):  
Robert R. West ◽  
Terra Malmstrom ◽  
J. Richard McIntosh

Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.


1998 ◽  
Vol 8 (7) ◽  
pp. 288-292 ◽  
Author(s):  
Rosario Rizzuto ◽  
Walter Carrington ◽  
Richard A Tuft

1996 ◽  
Vol 109 (5) ◽  
pp. 961-969 ◽  
Author(s):  
K.D. Brown ◽  
K.W. Wood ◽  
D.W. Cleveland

The kinesin-like protein CENP-E transiently associates with kinetochores following nuclear envelope breakdown in late prophase, remains bound throughout metaphase, but sometime after anaphase onset it releases and by telophase becomes bound to interzonal microtubules of the mitotic spindle. Inhibition of poleward chromosome movement in vitro by CENP-E antibodies and association of CENP-E with minus-end directed microtubule motility in vitro have combined to suggest a key role for CENP-E as an anaphase chromosome motor. For this to be plausible in vivo depends on whether CENP-E remains kinetochore associated during anaphase. Using Indian muntjac cells whose seven chromosomes have large, easily tracked kinetochores, we now show that CENP-E is kinetochore-associated throughout the entirety of anaphase-A (poleward chromosome movement), relocating gradually during spindle elongation (anaphase-B) to the interzonal microtubules. These observations support roles for CENP-E not only in the initial alignment of chromosomes at metaphase and in spindle elongation in anaphase-B, but also in poleward chromosome movement in anaphase-A.


2019 ◽  
Author(s):  
Hugo Girão ◽  
Naoyuki Okada ◽  
Ana C. Figueiredo ◽  
Zaira Garcia ◽  
Tatiana Moutinho-Santos ◽  
...  

AbstractThe fine regulation of kinetochore microtubule dynamics during mitosis ensures proper chromosome segregation by promoting error correction and spindle assembly checkpoint (SAC) satisfaction. CLASPs are widely conserved microtubule plus-end-tracking proteins that regulate microtubule dynamics throughout the cell cycle and independently localize to kinetochores during mitosis. Thus, CLASPs are ideally positioned to regulate kinetochore microtubule dynamics, but the underlying molecular mechanism remains unknown. Here we found that human CLASP2 can dimerize through its C-terminal kinetochore-targeting domain, but kinetochore localization was independent of dimerization. CLASP2 kinetochore localization, microtubule plus-end-tracking and microtubule lattice binding through TOG2 and TOG3 (but not TOG1) domains, independently sustained normal spindle length, timely SAC satisfaction, chromosome congression and faithful segregation. Measurements of kinetochore microtubule half-life in living cells expressing RNAi-resistant mutants revealed that CLASP2 kinetochore localization, microtubule plus-end-tracking and lattice binding cooperatively modulate kinetochore microtubule stability during mitosis. Thus, CLASP2 regulates kinetochore microtubule dynamics by integrating distinctive microtubule-binding properties at the kinetochore-microtubule interface to ensure chromosome segregation fidelity.


2016 ◽  
Vol 27 (16) ◽  
pp. 2576-2589 ◽  
Author(s):  
Karen Perry McNally ◽  
Michelle T. Panzica ◽  
Taekyung Kim ◽  
Daniel B. Cortes ◽  
Francis J. McNally

In a wide range of eukaryotes, chromosome segregation occurs through anaphase A, in which chromosomes move toward stationary spindle poles, anaphase B, in which chromosomes move at the same velocity as outwardly moving spindle poles, or both. In contrast, Caenorhabditis elegans female meiotic spindles initially shorten in the pole-to-pole axis such that spindle poles contact the outer kinetochore before the start of anaphase chromosome separation. Once the spindle pole-to-kinetochore contact has been made, the homologues of a 4-μm-long bivalent begin to separate. The spindle shortens an additional 0.5 μm until the chromosomes are embedded in the spindle poles. Chromosomes then separate at the same velocity as the spindle poles in an anaphase B–like movement. We conclude that the majority of meiotic chromosome movement is caused by shortening of the spindle to bring poles in contact with the chromosomes, followed by separation of chromosome-bound poles by outward sliding.


Author(s):  
Yih-Tai Chen ◽  
Ursula Euteneuer ◽  
Ken B. Johnson ◽  
Michael P. Koonce ◽  
Manfred Schliwa

The application of video techniques to light microscopy and the development of motility assays in reactivated or reconstituted model systems rapidly advanced our understanding of the mechanism of organelle transport and microtubule dynamics in living cells. Two microtubule-based motors have been identified that are good candidates for motors that drive organelle transport: kinesin, a plus end-directed motor, and cytoplasmic dynein, which is minus end-directed. However, the evidence that they do in fact function as organelle motors is still indirect.We are studying microtubule-dependent transport and dynamics in the giant amoeba, Reticulomyxa. This cell extends filamentous strands backed by an extensive array of microtubules along which organelles move bidirectionally at up to 20 μm/sec (Fig. 1). Following removal of the plasma membrane with a mild detergent, organelle transport can be reactivated by the addition of ATP (1). The physiological, pharmacological and biochemical characteristics show the motor to be a cytoplasmic form of dynein (2).


Sign in / Sign up

Export Citation Format

Share Document