microtubule stability
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 75)

H-INDEX

49
(FIVE YEARS 6)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Maria V. Yusenko ◽  
Abhiruchi Biyanee ◽  
Daria Frank ◽  
Leonhard H. F. Köhler ◽  
Mattias K. Andersson ◽  
...  

Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here, we present the initial characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a nanomolar-active MYB-inhibitory compound identified in a screen for novel MYB inhibitors. Bcr-TMP affects MYB function in a dual manner by inducing its degradation and suppressing its transactivation potential by disrupting its cooperation with co-activator p300. Bcr-TMP also interferes with the p300-dependent stimulation of C/EBPβ, a transcription factor co-operating with MYB in myeloid cells, indicating that Bcr-TMP is a p300-inhibitor. Bcr-TMP reduces the viability of AML cell lines at nanomolar concentrations and induces cell-death and expression of myeloid differentiation markers. It also down-regulates the expression of MYB target genes and exerts stronger anti-proliferative effects on MYB-addicted primary murine AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Surprisingly, we observed that Bcr-TMP also has microtubule-disrupting activity, pointing to a possible link between MYB-activity and microtubule stability. Overall, Bcr-TMP is a highly potent multifunctional MYB-inhibitory agent that warrants further investigation of its therapeutic potential and mechanism(s) of action.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3600
Author(s):  
Min-Jeong Cho ◽  
Yu-Jin Kim ◽  
Won-Dong Yu ◽  
You-Sin Kim ◽  
Jae-Ho Lee

Mitochondria move along the microtubule network and produce bioenergy in the cell. However, there is no report of a relationship between bioenergetic activity of mitochondria and microtubule stability in mammalian cells. This study aimed to investigate this relationship. We treated HEK293 cells with microtubule stabilizers (Taxol and Epothilone D) or a microtubule disturber (vinorelbine), and performed live-cell imaging to determine whether mitochondrial morphology and bioenergetic activity depend on the microtubule status. Treatment with microtubule stabilizers enhanced the staining intensity of microtubules, significantly increased ATP production and the spare respiratory capacity, dramatically increased mitochondrial fusion, and promoted dynamic movement of mitochondria. By contrast, bioenergetic activity of mitochondria was significantly decreased in cells treated with the microtubule disturber. Our data suggest that microtubule stability promotes mitochondrial functional activity. In conclusion, a microtubule stabilizer can possibly recover mitochondrial functional activity in cells with unstable microtubules.


2021 ◽  
Author(s):  
Maurits Kok ◽  
Florian Huber ◽  
Svenja-Marei Kalisch ◽  
Marileen Dogterom

Microtubule stability is known to be governed by a stabilizing GTP/GDP-Pi cap, but the exact relation between growth velocity, GTP hydrolysis and catastrophes remains unclear. We investigate the dynamics of the stabilizing cap through in vitro reconstitution of microtubule dynamics in contact with micro-fabricated barriers, using the plus-end binding protein GFP-EB3 as a marker for the nucleotide state of the tip. The interaction of growing microtubules with steric objects is known to slow down microtubule growth and accelerate catastrophes. We show that the lifetime distributions of stalled microtubules, as well as the corresponding lifetime distributions of freely growing microtubules, can be fully described with a simple phenomenological 1D model based on noisy microtubule growth and a single EB3-dependent hydrolysis rate. This same model is furthermore capable of explaining both the previously reported mild catastrophe dependence on microtubule growth rates and the catastrophe statistics during tubulin washout experiments.


2021 ◽  
Author(s):  
Mira Kuzmić ◽  
Gerard Castro Linares ◽  
Jindřiška Leischner Fialová ◽  
François Iv ◽  
Danièle Salaün ◽  
...  

Septins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies.


2021 ◽  
Vol 19 ◽  
Author(s):  
Ahmed Soliman ◽  
Lidia Bakota ◽  
Roland Brandt

: The microtubule skeleton plays an essential role in nerve cells as the most important structural determinant of morphology and as a highway for axonal transport processes. Many neurodegenerative diseases are characterized by changes in the structure and organization of microtubules and microtubule-regulating proteins such as the microtubule-associated protein tau, which exhibits characteristic changes in a whole class of diseases collectively referred to as tauopathies. Changes in the dynamics of microtubules appear to occur early under neurodegenerative conditions and are also likely to contribute to age-related dysfunction of neurons. Thus, modulating microtubule dynamics and correcting impaired microtubule stability can be a useful neuroprotective strategy to counteract disruption of the microtubule system in disease and aging. In this article, we review current microtubule-directed approaches for the treatment of neurodegenerative diseases with microtubules as drug target, tau as drug target, and posttranslational modifications as potential modifiers of the microtubule system. We discuss limitations of the approaches that can be traced back to the rather unspecific mechanism of action, which causes undesirable side effects on non-neuronal cell types or which are due to the disruption of non-microtubule-related interactions. We also develop some thoughts on how the specificity of the approaches can be improved and what further targets could be used for modulating substances.


Author(s):  
Mireia Andreu-Carbó ◽  
Simon Fernandes ◽  
Marie-Claire Velluz ◽  
Karsten Kruse ◽  
Charlotte Aumeier

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kathryn P Trogden ◽  
Justin S Lee ◽  
Kai M Bracey ◽  
Kung-Hsien Ho ◽  
Hudson McKinney ◽  
...  

Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that microtubule stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable microtubules. Consistently, microtubule hyper-stabilization prevents, and microtubule depolymerization promotes capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that microtubule depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). Microtubule depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without microtubules, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by microtubule depolymerization yet required for secretion under these conditions, indicating that microtubule-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel microtubule function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.


2021 ◽  
Author(s):  
Maximilian Englert ◽  
Katja Aurbach ◽  
Annika Gerber ◽  
Tobias Heib ◽  
Isabelle C. Becker ◽  
...  

Megakaryocytes are large cells in the bone marrow, which give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of mature cells in close proximity to bone marrow sinusoids and the formation of protrusions, which are shed into the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics were not affected in the absence of RhoB. However, in vitro generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with pronouncedly reduced levels of acetylated α-tubulin. Our findings imply that absence of this tubulin posttranslational modification results in decreased microtubule stability leading to microthrombocytopenia in RhoB-deficient mice. Our data thus points to specifically impaired microtubule - but not actin - dynamics as a general mechanism underlying the manifestation of microthrombocytopenia in vivo. We furthermore demonstrate that RhoA and RhoB have specific, non-redundant functions in the megakaryocyte lineage.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Giorgia Iegiani ◽  
Ferdinando Di Cunto ◽  
Gianmarco Pallavicini

AbstractMedulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.


Sign in / Sign up

Export Citation Format

Share Document