scholarly journals Dissection of the asynchronous transport of intestinal microvillar hydrolases to the cell surface.

1988 ◽  
Vol 106 (6) ◽  
pp. 1853-1861 ◽  
Author(s):  
B Stieger ◽  
K Matter ◽  
B Baur ◽  
K Bucher ◽  
M Höchli ◽  
...  

Novel subcellular fractionation procedures and pulse-chase techniques were used to study the intracellular transport of the microvillar membrane hydrolases sucrase-isomaltase and dipeptidylpeptidase IV in the differentiated colon adenocarcinoma cell line Caco-2. The overall rate of transport to the cell surface was two fold faster for dipeptidylpeptidase IV than for sucrase-isomaltase, while no significant differences were observed in transport rates from the site of complex glycosylation to the brush border. The delayed arrival of sucrase-isomaltase in the compartment where complex glycosylation occurs was only in part due to exit from the endoplasmic reticulum. A major slow-down could be ascribed to maturation in and transit of this enzyme through the Golgi apparatus. These results suggest that the observed asynchronism is due to more than one rate-limiting step along the rough endoplasmic reticulum to trans-Golgi pathway.

2020 ◽  
Vol 3 (2) ◽  
pp. e201800161 ◽  
Author(s):  
Mainak Bose ◽  
Susanta Chatterjee ◽  
Yogaditya Chakrabarty ◽  
Bahnisikha Barman ◽  
Suvendra N Bhattacharyya

microRNAs are short regulatory RNAs in metazoan cells. Regulation of miRNA activity and abundance is evident in human cells where availability of target messages can influence miRNA biogenesis by augmenting the Dicer1-dependent processing of precursors to mature microRNAs. Requirement of subcellular compartmentalization of Ago2, the key component of miRNA repression machineries, for the controlled biogenesis of miRNPs is reported here. The process predominantly happens on the polysomes attached with the endoplasmic reticulum for which the subcellular Ago2 trafficking is found to be essential. Mitochondrial tethering of endoplasmic reticulum and its interaction with endosomes controls Ago2 availability. In cells with depolarized mitochondria, miRNA biogenesis gets impaired, which results in lowering of de novo–formed mature miRNA levels and accumulation of miRNA-free Ago2 on endosomes that fails to interact with Dicer1 and to traffic back to endoplasmic reticulum for de novo miRNA loading. Thus, mitochondria by sensing the cellular context regulates Ago2 trafficking at the subcellular level, which acts as a rate-limiting step in miRNA biogenesis process in mammalian cells.


1990 ◽  
Vol 270 (1) ◽  
pp. 197-203 ◽  
Author(s):  
G M Kindberg ◽  
S Magnusson ◽  
T Berg ◽  
B Smedsrød

1. The uptake of ovalbumin (OVA) in rat liver parenchymal cells (PC) and non-parenchymal cells was studied in vivo and in vitro in order to compare the cellular expression of glycoprotein receptors and the kinetics of intracellular transport of ligand endocytosed by these receptors. 2. Ovalbumin was labelled with 125I or with 125I-tyramine-cellobiose (125I-TC). By using 125I-TC-OVA the labelled degradation products were trapped in the cells. 3. 125I-TC-OVA was rapidly cleared from blood mainly by receptor-mediated uptake in the liver. At 30 min after injection, 50% of the ligand was recovered in the liver. The endothelial cells (EC) and the PC were the predominant cell types responsible for uptake. 4. The uptake in PC was strongly inhibited by asialo-orosomucoid (AOM), but not by mannan, indicating that the uptake in these cells was mediated by the galactose receptor and not by the mannose receptor. This finding is compatible with the observation that a proportion of the OVA contains terminal galactose residues in the carbohydrate moiety. 5. In vitro uptake of OVA in cultured EC was saturable and inhibited by mannan, mannose, fructose, N-acetylglucosamine, EDTA or monensin, but not by galactose or AOM. The uptake of OVA in these cells was therefore mediated by the mannose receptor. 6. To label the organelles involved in endocytosis in PC and EC, 125I-TC-OVA was injected intravenously together with an excess of either AOM or mannan. In this way the labelled ligand could be directed selectively to EC or PC respectively. Subcellular fractionation of total liver in sucrose and Nycodenz gradients revealed that in EC the intracellular transport of OVA is so fast that endocytosed ligand accumulates and thus increases the density of the lysosomes. Conversely, in PC transfer of ligand is slower, with the result that accumulation of undegraded ligand in the lysosomes does not occur. These findings are interpreted to mean that in EC the rate-limiting step of handling of endocytosed ligand is intralysosomal degradation, whereas in PC the rate-limiting step is transport of ligand to the lysosomes. 7. Altogether, these findings suggest that endocytosis of OVA by the liver EC and PC is mediated by mannose and galactose receptors respectively, and that the kinetics of intracellular transport of OVA differ in the two cell types.


2014 ◽  
Vol 206 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Satoshi Ninagawa ◽  
Tetsuya Okada ◽  
Yoshiki Sumitomo ◽  
Yukiko Kamiya ◽  
Koichi Kato ◽  
...  

Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease–mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

Sign in / Sign up

Export Citation Format

Share Document