human cell line
Recently Published Documents


TOTAL DOCUMENTS

906
(FIVE YEARS 189)

H-INDEX

71
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 544
Author(s):  
Oscar Cervantes ◽  
Zaira del Rocio Lopez ◽  
Norberto Casillas ◽  
Peter Knauth ◽  
Nayeli Checa ◽  
...  

A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.


2022 ◽  
Author(s):  
Melanie Jambeau ◽  
Kevin D. Meyer ◽  
Marian Hruska-Plochan ◽  
Ricardos Tabet ◽  
Chao-Zong Lee ◽  
...  

Hexanucleotide G4C2 repeat expansions in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intracellular poly-GA and reduced aggregate formation in a poly-GA over-expressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 months was well-tolerated and led to measurable brain penetration of antibodies. Long term treatment with anti-GA antibodies produced improvement in an open field movement test in aged C9ORF72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Federica Riccio ◽  
Elisa Micarelli ◽  
Riccardo Secci ◽  
Giulio Giuliani ◽  
Simone Vumbaca ◽  
...  

AbstractRepurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds, which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to different drug repurposing projects.


2022 ◽  
Author(s):  
Pedro Salas-Ambrosio ◽  
Antoine Tronnet ◽  
Mostafa Badreldin ◽  
Luzangel Reyes-Borrayo ◽  
Marc Since ◽  
...  

We developed new macromolecular engineering approaches enabling the preparation of star-like polypeptoids by ring-opening polymerization. Parallely to the evaluation of their cytotoxicity of the HepG2 human cell line, their screening...


BPB Reports ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 1-4
Author(s):  
Shun-ichi Eto ◽  
Aoi Koshida ◽  
Hirofumi Tsujino ◽  
Kazuya Nagano ◽  
Kazuma Higashisaka ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Shelly Mahlab-Aviv ◽  
Nathan Linial ◽  
Michal Linial

A hallmark of cancer evolution is that the tumor may change its cell identity and improve its survival and fitness. Drastic change in microRNA (miRNA) composition and quantities accompany such dynamic processes. Cancer samples are composed of cells’ mixtures of varying stages of cancerous progress. Therefore, cell-specific molecular profiling represents cellular averaging. In this study, we consider the degree to which altering miRNAs composition shifts cell behavior. We used COMICS, an iterative framework that simulates the stochastic events of miRNA-mRNA pairing, using a probabilistic approach. COMICS simulates the likelihood that cells change their transcriptome following many iterations (100 k). Results of COMICS from the human cell line (HeLa) confirmed that most genes are resistant to miRNA regulation. However, COMICS results suggest that the composition of the abundant miRNAs dictates the nature of the cells (across three cell lines) regardless of its actual mRNA steady-state. In silico perturbations of cell lines (i.e., by overexpressing miRNAs) allowed to classify genes according to their sensitivity and resilience to any combination of miRNA perturbations. Our results expose an overlooked quantitative dimension for a set of genes and miRNA regulation in living cells. The immediate implication is that even relatively modest overexpression of specific miRNAs may shift cell identity and impact cancer evolution.


2021 ◽  
Vol 14 (12) ◽  
pp. 1317
Author(s):  
Milad Baroud ◽  
Elise Lepeltier ◽  
Yolla El-Makhour ◽  
Nolwenn Lautram ◽  
Jerome Bejaud ◽  
...  

5-Azacitidine, a cytidine analogue used as a hypomethylating agent, is one of the main drugs for the treatment of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) in the elderly. However, after administration, it exhibits several limitations, including restricted diffusion and cellular internalization due to its hydrophilicity, and a rapid enzymatic degradation by adenosine deaminase. The aim of this study was to improve the drug cell diffusion and protect it from metabolic degradation via the synthesis of amphiphilic prodrugs and their potential self-assembly. Azacitidine was conjugated to two different omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The carboxylic acid group of the omega-3 fatty acids was effectively conjugated to the amine group of the azacitidine base, yielding two amphiphilic prodrugs. Nanoprecipitation of the obtained prodrugs was performed and self-assemblies were successfully obtained for both prodrugs, with a mean diameter of 190 nm, a polydispersity index below 0.2 and a positive zeta potential. The formation of self-assemblies was confirmed using pyrene as a fluorescent dye, and the critical aggregation concentrations were determined: 400 µM for AzaEPA and 688 µM for AzaDHA. Additionally, the stability of the obtained self-assemblies was studied and after 5 days their final stable arrangement was reached. Additionally, cryo-TEM revealed that the self-assemblies attain a multilamellar vesicle supramolecular structure. Moreover, the obtained self-assemblies presented promising cytotoxicity on a leukemia human cell line, having a low IC50 value, comparable to that of free azacitidine.


2021 ◽  
Vol 22 (24) ◽  
pp. 13538
Author(s):  
Erina Shiraishi ◽  
Keishi Ishida ◽  
Daisuke Matsumaru ◽  
Akiko Ido ◽  
Youhei Hiromori ◽  
...  

Propolis is a resinous mixture produced by bees from their secretions and plant material, so its composition varies depending on its botanical origin. Propolis has several beneficial bioactivities, but its skin sensitization properties have long been suspected. Nevertheless, the skin sensitization potency of Brazilian green propolis (BGP) has not been scientifically evaluated. Here, we used scientifically reliable tests to evaluate it. In vitro antigenicity test based on the human cell line activation test (OECD TG 442E) was performed by measuring the expression of CD54 and CD86, which are indicators of the antigenicity of test substances, on THP-1 and DC2.4 cells. BGP did not affect the expression of either marker on THP-1 cells, but upregulated the expression of CD86 on DC2.4 cells, suggesting that BGP may be a skin sensitizer. Then, we performed local lymph node assay (LLNA, OECD TG 429) as a definitive in vivo test. LLNA showed that 1.70% BGP primed skin sensitization and is a “moderate sensitizer”. Our results indicate scientific proof of the validity of arbitrary concentrations (1–2%), which have been used empirically, and provide the first scientific information on the safe use of BGP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Berini ◽  
Viviana Teresa Orlandi ◽  
Federica Gamberoni ◽  
Eleonora Martegani ◽  
Ilaria Armenia ◽  
...  

In the era of antimicrobial resistance, the use of nanoconjugated antibiotics is regarded as a promising approach for preventing and fighting infections caused by resistant bacteria, including those exacerbated by the formation of difficult-to-treat bacterial biofilms. Thanks to their biocompatibility and magnetic properties, iron oxide nanoparticles (IONPs) are particularly attractive as antibiotic carriers for the targeting therapy. IONPs can direct conjugated antibiotics to infection sites by the use of an external magnet, facilitating tissue penetration and disturbing biofilm formation. As a consequence of antibiotic localization, a decrease in its administration dosage might be possible, reducing the side effects to non-targeted organs and the risk of antibiotic resistance spread in the commensal microbiota. Here, we prepared nanoformulations of the ‘last-resort’ glycopeptides teicoplanin and vancomycin by conjugating them to IONPs via surface functionalization with (3-aminopropyl) triethoxysilane (APTES). These superparamagnetic NP-TEICO and NP-VANCO were chemically stable and NP-TEICO (better than NP-VANCO) conserved the typical spectrum of antimicrobial activity of glycopeptide antibiotics, being effective against a panel of staphylococci and enterococci, including clinical isolates and resistant strains. By a combination of different methodological approaches, we proved that NP-TEICO and, although to a lesser extent, NP-VANCO were effective in reducing biofilm formation by three methicillin-sensitive or resistant Staphylococcus aureus strains. Moreover, when attracted and concentrated by the action of an external magnet, NP-TEICO exerted a localized inhibitory effect on S. aureus biofilm formation at low antibiotic concentration. Finally, we proved that the conjugation of glycopeptide antibiotics to IONPs reduced their intrinsic cytotoxicity toward a human cell line.


Sign in / Sign up

Export Citation Format

Share Document