scholarly journals A single mRNA, transcribed from an alternative, erythroid-specific, promoter, codes for two non-myristylated forms of NADH-cytochrome b5 reductase

1992 ◽  
Vol 117 (5) ◽  
pp. 975-986 ◽  
Author(s):  
G Pietrini ◽  
D Aggujaro ◽  
P Carrera ◽  
J Malyszko ◽  
A Vitale ◽  
...  

Two forms of NADH-cytochrome b5 reductase are produced from one gene: a myristylated membrane-bound enzyme, expressed in all tissues, and a soluble, erythrocyte-specific, isoform. The two forms are identical in a large cytoplasmic domain (Mr approximately 30,000) and differ at the NH2-terminus, which, in the membrane form, is responsible for binding to the bilayer, and which contains the myristylation consensus sequence and an additional 14 uncharged amino acids. To investigate how the two differently targeted forms of the reductase are produced, we cloned a reductase transcript from reticulocytes, and studied its relationship to the previously cloned liver cDNA. The reticulocyte transcript differs from the liver transcript in the 5' non-coding portion and at the beginning of the coding portion, where the seven codons specifying the myristoylation consensus are replaced by a reticulocyte-specific sequence which codes for 13 non-charged amino acids. Analysis of genomic reductase clones indicated that the ubiquitous transcript is generated from an upstream "housekeeping" type promoter, while the reticulocyte transcript originates from a downstream, erythroid-specific, promoter. In vitro translation of the reticulocyte-specific mRNA generated two products: a minor one originating from the first AUG, and a major one starting from a downstream AUG, as indicated by mutational analysis. Both the AUGs used as initiation codons were in an unfavorable sequence context. The major, lower relative molecular mass product behaved as a soluble protein, while the NH2-terminally extended minor product interacted with microsomes in vitro. The generation of soluble reductase from a downstream AUG was confirmed in vivo, in Xenopus oocytes. Thus, differently localized products, with respect both to tissues and to subcellular compartments, are generated from the same gene by a combination of transcriptional and translational mechanisms.

2001 ◽  
Vol 355 (2) ◽  
pp. 529-535 ◽  
Author(s):  
Alena LEROUX ◽  
Luisa MOTA VIEIRA ◽  
Axel KAHN

Cytochrome b5 reductase (b5R) is an essential enzyme that exists in soluble and membrane-bound isoforms, each with specific functions. In the rat, the two forms are generated from alternative transcripts differing in the first exons. In contrast, the biogenesis of b5R isoforms in the human is not yet well understood. In the present study we have detected three novel alternative exons, designated 1S, S′ and 1B, located between the first alternative exon 1M and the common second exon in the human b5R gene. Accordingly, multiple M-type, S-type and SS′-type and B-type transcripts are generated. All types of human b5R transcript are expressed ubiquitously. An analysis of in vitro translation products demonstrated an alternative use of different AUG initiators resulting in the production of various human b5R protein isoforms. Our results indicate that the organization of the 5′ region of the b5R gene is not conserved between rodents and humans. Insertion of Alu elements into the human b5R gene, in particular just upstream of the S/S′ region, could be responsible for dynamic events of gene rearrangement during evolution.


2001 ◽  
Vol 21 (1) ◽  
pp. 354-366 ◽  
Author(s):  
Carolina Sousa ◽  
Christina Johansson ◽  
Celine Charon ◽  
Hamid Manyani ◽  
Christof Sautter ◽  
...  

ABSTRACT A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin geneenod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5′ and 3′ regions ofenod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.


1990 ◽  
Vol 107 (6) ◽  
pp. 810-816 ◽  
Author(s):  
Shuhei Zenno ◽  
Masahira Hattori ◽  
Yoshio Misumi ◽  
Toshitsugu Yubisui ◽  
Yoshiyuki Sakaki

2018 ◽  
Vol 32 (1) ◽  
pp. 165-171 ◽  
Author(s):  
H. Shino ◽  
Y. Otsuka-Yamasaki ◽  
T. Sato ◽  
K. Ooi ◽  
O. Inanami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document