scholarly journals Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus.

1994 ◽  
Vol 126 (4) ◽  
pp. 839-852 ◽  
Author(s):  
M Srinivasan ◽  
C F Edman ◽  
H Schulman

Intracellular targeting may enable protein kinases with broad substrate-specificities, such as multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) to achieve a selectivity of action in vivo. We have examined the intracellular targeting of three delta-CaM kinase isoforms. The delta B-CaM kinase isoform is targeted to the nucleus in transfected cells while the delta A- and delta C-CaM kinase isoforms are cytosolic/cytoskeletal. A chimeric construct of alpha-CaM kinase containing the delta B-CaM kinase variable domain is rerouted to the nucleus while the native alpha-CaM kinase and chimeras of alpha-CaM kinase which contain the delta A- or delta C-CaM kinase variable domains are retained in the cytoplasm. Using site-directed mutagenesis, we have defined a nuclear localization signal (NLS) within an 11-amino acid sequence, likely inserted by alternative splicing, in the variable domain of delta B-CaM kinase. Isoform-specific nuclear targeting of CaM kinase is probably a key mechanism in the selective regulation of nuclear functions by CaM kinase. CaM kinase is a multimer that can be composed of several isoforms. We find that when cells express two different isoforms of CaM kinase, cellular targeting is determined by the ratio of the isoforms. When an excess of the cytoplasmic isoform of CaM kinase is coexpressed along with the nuclear isoform, both isoforms are localized in the cytoplasm. Conversely an excess of the nuclear isoform can reroute the cytoplasmic isoform to the nucleus. The nuclear isoform likely coassembles with the cytosolic isoform, to form a heteromultimeric holoenzyme which is transported into the nucleus. These experiments demonstrate isoform-specific targeting of CaM kinase and indicate that such targeting can be modified by the expression of multiple isoforms of the enzyme.

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81387 ◽  
Author(s):  
Rebecca A. Boisvert ◽  
Meghan A. Rego ◽  
Paul A. Azzinaro ◽  
Maurizio Mauro ◽  
Niall G. Howlett

2011 ◽  
Vol 286 (27) ◽  
pp. 23831-23841 ◽  
Author(s):  
Soma Ghosh ◽  
Alex P. Vassilev ◽  
Junmei Zhang ◽  
Yingming Zhao ◽  
Melvin L. DePamphilis

Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2–5) complex in the nucleus, an ORC(1–5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1–6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2–5) are transported independently to the nucleus where they can either assemble into ORC(1–6) or function individually.


2009 ◽  
Vol 20 (8) ◽  
pp. 2196-2206 ◽  
Author(s):  
Mary B. Kroetz ◽  
Dan Su ◽  
Mark Hochstrasser

The SUMO protein is covalently attached to many different substrates throughout the cell. This modification is rapidly reversed by SUMO proteases. The Saccharomyces cerevisiae SUMO protease Ulp2 is a nuclear protein required for chromosome stability and cell cycle restart after checkpoint arrest. Ulp2 is related to the human SENP6 protease, also a nuclear protein. All members of the Ulp2/SENP6 family of SUMO proteases have large but poorly conserved N-terminal domains (NTDs) adjacent to the catalytic domain. Ulp2 also has a long C-terminal domain (CTD). We show that CTD deletion has modest effects on yeast growth, but poly-SUMO conjugates accumulate. In contrast, the NTD is essential for Ulp2 function and is required for nuclear targeting. Two short, widely separated sequences within the NTD confer nuclear localization. Efficient Ulp2 import into the nucleus requires the β-importin Kap95, which functions on classical nuclear-localization signal (NLS)-bearing substrates. Remarkably, replacement of the entire >400-residue NTD by a heterologous NLS results in near-normal Ulp2 function. These data demonstrate that nuclear localization of Ulp2 is crucial in vivo, yet only small segments of the NTD provide the key functional elements, explaining the minimal sequence conservation of the NTDs in the Ulp2/SENP6 family of enzymes.


1992 ◽  
Vol 4 (10) ◽  
pp. 1213
Author(s):  
Marguerite J. Varagona ◽  
Robert J. Schmidt ◽  
Natasha V. Raikhel

2006 ◽  
Vol 84 (4) ◽  
pp. 565-571
Author(s):  
Julie Champagne ◽  
Denis Leclerc

The delivery of the double-stranded DNA viral genome into the nucleus is a critical step for the type member of Caulimoviridae, cauliflower mosaic virus (CaMV). The nucleocapsid (NC) of CaMV is directly involved in this process. A nuclear localization signal located at the N-terminus of the NC was shown to be exposed at the surface of the virion. This nuclear localization signal appears to be important to direct the virus to the nuclear pore complex. The nuclear targeting of the NC needs to be tightly regulated because the process of virus assembly, which also involves the viral NC, occurs in the cytosol. It is now accepted that the N- and C-terminal extensions of the viral NC precursor are efficient regulatory sequences that determine the localization of the viral NC in infected leaves. Proteolytic maturation and phosphorylation of the N- and C-terminal extensions are also important in the regulation of this process. Despite these recent discoveries, the transport of CaMV toward and into the nucleus during early events in the infection cycle remains unclear. In this review, we summarize recent advances that explain the mechanisms of targeting of the CaMV genome to the nucleus and extract from other related animal and plant viruses mechanisms that could hint at the possible strategies used by CaMV to enter the nucleus.


2019 ◽  
Vol 94 (3) ◽  
Author(s):  
Yu-Ching Dai ◽  
Yen-Tzu Liao ◽  
Yi-Ting Juan ◽  
Yi-Ying Cheng ◽  
Mei-Tzu Su ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) genomic DNA is replicated and packaged into procapsids in the nucleus to form nucleocapsids, which are then transported into the cytoplasm for tegumentation and final maturation. The process is facilitated by the coordination of the viral nuclear egress complex (NEC), which consists of BFLF2 and BFRF1. By expression alone, BFLF2 is distributed mainly in the nucleus. However, it colocalizes with BFRF1 at the nuclear rim and in cytoplasmic nuclear envelope-derived vesicles in coexpressing cells, suggesting temporal control of the interaction between BFLF2 and BFRF1 is critical for their proper function. The N-terminal sequence of BFLF2 is less conserved than that of alpha- and betaherpesvirus homologs. Here, we found that BFLF2 amino acids (aa) 2 to 102 are required for both nuclear targeting and its interaction with BFRF1. Coimmunoprecipitation and confocal analysis indicated that aa 82 to 106 of BFLF2 are important for its interaction with BFRF1. Three crucial amino acids (R47, K50, and R52) and several noncontinuous arginine and histidine residues within aa 59 to 80 function together as a noncanonical nuclear localization signal (NLS), which can be transferred onto yellow fluorescent protein (YFP)-LacZ for nuclear targeting in an importin β-dependent manner. Virion secretion is defective in 293 cells harboring a BFLF2 knockout EBV bacmid upon lytic induction and is restored by trans-complementation of wild-type BFLF2, but not NLS or BFRF1-interacting defective mutants. In addition, multiple domains of BFRF1 were found to bind BFLF2, suggesting multiple contact regions within BFRF1 and BFLF2 are required for proper nuclear egress of EBV nucleocapsids. IMPORTANCE Although Epstein-Barr virus (EBV) BFRF1 and BFLF2 are homologs of conserved viral nuclear egress complex (NEC) in all human herpesviruses, unique amino acid sequences and functions were identified in both proteins. In this study, the nuclear targeting and BFRF1-interacting domains were found within the N terminus of BFLF2. We showed that amino acids (aa) 82 to 106 are the major region required for BFLF2 to interact with BFRF1. However, the coimmunoprecipitation (Co-IP) data and glutathione transferase (GST) pulldown experiments revealed that multiple regions of both proteins contribute to reciprocal interactions. Different from the canonical nuclear localization signal (NLS) in other herpes viral homologs, BFLF2 contains a novel importin-dependent nuclear localization signal, including R47, K50, and R52 and several neighboring discontinuous arginine and histidine residues. Using a bacmid complementation system, we show that both the nuclear targeting and the novel nuclear localization signal within aa 82 to 106 of BFLF2 are required for virion secretion.


Sign in / Sign up

Export Citation Format

Share Document