scholarly journals The phosphoprotein stathmin is essential for nerve growth factor-stimulated differentiation.

1996 ◽  
Vol 133 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
G Di Paolo ◽  
V Pellier ◽  
M Catsicas ◽  
B Antonsson ◽  
S Catsicas ◽  
...  

Stathmin is a ubiquitous cytosolic protein which undergoes extensive phosphorylation in response to a variety of external signals. It is highly abundant in developing neurons. The use of antisense oligonucleotides which selectively block stathmin expression has allowed us to study directly its role in rat PC12 cells. We show that stathmin depletion prevents nerve growth factor (NGF)-stimulated differentiation of PC12 cells into sympathetic-like neurons although the expression of several NGF-inducible genes was not affected. Furthermore, we found that stathmin phosphorylation in PC12 cells which is induced by NGF depends on mitogen-activated protein kinase (MAPK) activity. We conclude that stathmin is an essential component of the NGF-induced MAPK signaling pathway and performs a key role during differentiation of developing neurons.

1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.


1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953 ◽  
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.


1998 ◽  
Vol 80 (3) ◽  
pp. 1352-1361 ◽  
Author(s):  
Saobo Lei ◽  
William F. Dryden ◽  
Peter A. Smith

Lei, Saobo, William F. Dryden, and Peter A. Smith. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J. Neurophysiol. 80: 1352–1361, 1998. The cellular mechanisms that underlie nerve growth factor (NGF) induced increase in Ca2+-channel current in adult bullfrog sympathetic B-neurons were examined by whole cell recording techniques. Cells were maintained at low density in neuron-enriched, defined-medium, serum-free tissue culture for 6 days in the presence or absence of NGF (200 ng/ml). The increase in Ba2+ current ( I Ba) density induced by NGF was attenuated by the RNA synthesis inhibitor cordycepin (20 μM), by the DNA transcription inhibitor actinomycin D (0.01 μg/ml), by inhibitors of Ras isoprenylation (perillic acid 0.1–1.0 mM or α-hydroxyfarnesylphosphonic acid 10–100 μM), by tyrosine kinase inhibitors genistein (20 μM) or lavendustin A (1 μM), and by PD98059 (10–100 μM), an inhibitor of mitogen-activated protein kinase kinase. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) pathway (wortmannin, 100 nM, or LY29400, 100 μM) were ineffective as were inhibitors of phospholipase Cγ (U73122 or neomycin, both 100 μM). The effect of NGF persisted in Ca2+-free medium that contained 1.8 mM Mg2+ and 2 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. It was mimicked by a Trk antibody that was capable of inducing neurite outgrowth in explant cultures of bullfrog sympathetic ganglion. Antibodies raised against the low-affinity p75 neurotrophin receptor were ineffective in blocking the effect of NGF on I Ba. These results suggest that NGF-induced increase in Ca2+ channel current in adult sympathetic neurons results, at least in part, from new channel synthesis after Trk activation of Ras and mitogen activated protein kinase by a mechanism that is independent of extracellular Ca2+.


Sign in / Sign up

Export Citation Format

Share Document