scholarly journals Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells.

1996 ◽  
Vol 135 (5) ◽  
pp. 1391-1402 ◽  
Author(s):  
S Vagner ◽  
C Touriol ◽  
B Galy ◽  
S Audigier ◽  
M C Gensac ◽  
...  

Four isoforms of the human fibroblast growth factor 2 (FGF-2), with different intracellular localizations and distinct effects on cell phenotype, result from alternative initiations of translation at three CUG and one AUG start codons. We showed here by Western immunoblotting and immunoprecipitation that the CUG-initiated forms of FGF-2 were synthesized in transformed cells, whereas "normal" cells almost exclusively produced the AUG-initiated form. CUG-initiated FGF-2 was induced in primary skin fibroblasts in response to heat shock and oxidative stress. In transformed cells and in stressed fibroblasts, CUG expression was dependent on cis-elements within the 5' region of FGF-2 mRNA and was not correlated to mRNA level, indicating a translational regulation. UV cross-linking experiments revealed that CUG expression was linked to the binding of several cellular proteins to FGF-2 mRNA 5' region. Since translation of FGF-2 mRNA was previously shown to occur by internal ribosome entry, a nonclassical mechanism already described for picornaviruses, the cross-linking patterns of FGF-2 and picornavirus mRNAs were compared. Comigration of several proteins, including a p60, was observed. However, this p60 was shown to be different from the p57/PTB internal entry factor, suggesting a specificity towards FGF-2 mRNA. We report here a process of translational activation of the FGF-2 CUG-initiated forms in direct relation with trans-acting factors specific to transformed and stressed cells. These data favor a critical role of CUG-initiated FGF-2 in cell transformation and in the stress response.

1999 ◽  
Vol 19 (1) ◽  
pp. 505-514 ◽  
Author(s):  
Emmanuelle Arnaud ◽  
Christian Touriol ◽  
Christel Boutonnet ◽  
Marie-Claire Gensac ◽  
Stéphan Vagner ◽  
...  

ABSTRACT Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5′ end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3′ untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.


2020 ◽  
Vol 1626 ◽  
pp. 461367
Author(s):  
Svenja Nicolin Bolten ◽  
Anne-Sophie Knoll ◽  
Zhaopeng Li ◽  
Pia Gellermann ◽  
Iliyana Pepelanova ◽  
...  

Oncogene ◽  
2001 ◽  
Vol 20 (14) ◽  
pp. 1669-1677 ◽  
Author(s):  
Bruno Galy ◽  
Laurent Créancier ◽  
Catherine Zanibellato ◽  
Anne-Catherine Prats ◽  
Hervé Prats

Sign in / Sign up

Export Citation Format

Share Document