meniscal cells
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 22 (13) ◽  
pp. 6905
Author(s):  
Valentina Rafaela Herrera Millar ◽  
Laura Mangiavini ◽  
Umberto Polito ◽  
Barbara Canciani ◽  
Van Thi Nguyen ◽  
...  

The meniscus possesses low self-healing properties. A perfect regenerative technique for this tissue has not yet been developed. This work aims to evaluate the role of hypoxia in meniscal development in vitro. Menisci from neonatal pigs (day 0) were harvested and cultured under two different atmospheric conditions: hypoxia (1% O2) and normoxia (21% O2) for up to 14 days. Samples were analysed at 0, 7 and 14 days by histochemical (Safranin-O staining), immunofluorescence and RT-PCR (in both methods for SOX-9, HIF-1α, collagen I and II), and biochemical (DNA, GAGs, DNA/GAGs ratio) techniques to record any possible differences in the maturation of meniscal cells. Safranin-O staining showed increments in matrix deposition and round-shape “fibro-chondrocytic” cells in hypoxia-cultured menisci compared with controls under normal atmospheric conditions. The same maturation shifting was observed by immunofluorescence and RT-PCR analysis: SOX-9 and collagen II increased from day zero up to 14 days under a hypoxic environment. An increment of DNA/GAGs ratio typical of mature meniscal tissue (characterized by fewer cells and more GAGs) was observed by biochemical analysis. This study shows that hypoxia can be considered as a booster to achieve meniscal cell maturation, and opens new opportunities in the field of meniscus tissue engineering.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yulong Wei ◽  
Hao Sun ◽  
Tao Gui ◽  
Lutian Yao ◽  
Leilei Zhong ◽  
...  

Meniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using a Gli1 reporter line, we found that Gli1+ cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1+ cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers. In culture, meniscal Gli1+ cells possessed high progenitor activities under the control of Hh signal. Meniscus injury at the anterior horn induced a quick expansion of Gli1-lineage cells. Normally, meniscal tissue healed slowly, leading to cartilage degeneration. Ablation of Gli1+ cells further hindered this repair process. Strikingly, intra-articular injection of Gli1+ meniscal cells or an Hh agonist right after injury accelerated the bridging of the interrupted ends and attenuated signs of osteoarthritis. Taken together, our work identified a novel progenitor population in meniscus and proposes a new treatment for repairing injured meniscus and preventing osteoarthritis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingsong Wang ◽  
Sally Roberts ◽  
Jan Herman Kuiper ◽  
Weiguo Zhang ◽  
John Garcia ◽  
...  

AbstractMeniscus degeneration is closely related to the progression of knee osteoarthritis (OA). However, there is currently a lack of quantitative and objective metrics to assess OA meniscal cell phenotypes. In this study we investigated the phenotypic markers and chondrogenic potency of avascular and vascular meniscal cells and chondrocytes from medial OA knee joints (n = 10). Flow cytometry results showed that a significantly greater percentage of meniscal cells were positive for CD49b, CD49c and CD166 compared to donor-matched chondrocytes after 14 days in monolayer culture. The integrins, CD49b and CD29, were expressed at a significantly higher level on avascular meniscal cells derived from tissues with a more degenerated inner border than non-degenerate menisci, suggesting that the integrin family may play an important role in meniscus OA pathology. Collagen fibres arranged in a “tree-like” formation within the meniscus appeared to have less blood vessels associated with them in the vascular region of the most degenerate menisci, which may indicate that such structures are involved in the pathological process. We have demonstrated that meniscal cells derived from the lateral meniscus in medial OA patients have chondrogenic capacity in vitro and hence could represent a potential cell source to consider for meniscus tissue engineering.


2020 ◽  
Author(s):  
Yulong Wei ◽  
Hao Sun ◽  
Tao Gui ◽  
Lutian Yao ◽  
Leilei Zhong ◽  
...  

AbstractMeniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using Gli1-CreER tdTomato mice, we found that Gli1+ cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1+ cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers. In culture, meniscal Gli1+ cells possessed high progenitor activities under the control of Hh signal. Meniscus injury at the anterior horn induced a quick expansion of Gli1+ cells. Normally, the tissue healed slowly, leading to cartilage degeneration. Ablation of Gli1+ cells further hindered this repair process. Strikingly, intra-articular injection of Gli1+ meniscal cells or an Hh activator right after injury accelerated the bridging of the interrupted ends and attenuated signs of osteoarthritis. Taken together, our work identified a novel progenitor population in meniscus and proposes a new treatment for repairing injured meniscus and preventing osteoarthritis.


2020 ◽  
Author(s):  
Kelsey E Knewtson ◽  
Jesus G Gonzalez Flores ◽  
Donna M Pacicca ◽  
Jennifer L Robinson

Osteoarthritis is a disease marked by progressive and irreversible hyaline cartilage and fibrocartilage breakdown that affects the lives of millions of patients worldwide. Female sex and menopause are both risk factors for knee osteoarthritis, indicating that estrogen could play a role in this disease. In this study, RNA sequencing was used to determine the effects of estrogen treatment on human meniscal cells. Differences in the number and type of differentially expressed genes were seen based on donor sex, estrogen dose, and dosing kinetics. Significantly more differentially expressed genes were seen from male meniscal cells in response to all dosing conditions compared to female cells. Importantly, more genes were differentially expressed in cells treated with continuous dosing of estrogen, which has been shown to stimulate genomic estrogen signaling, as compared to pulsed dosing. Additionally, functional enrichment analysis revealed that many genes of the extracellular matrix, which is important for joint health and injury repair, were differentially expressed. Overall, this initial study lays the groundwork for future avenues to pursue the effect of estrogen delivery on regenerative pathways. This critical analysis will then inform the design and implementation of estrogen replacement therapies to promote meniscal health and reduce the onset of osteoarthritis.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 265
Author(s):  
Umberto Polito ◽  
Giuseppe M. Peretti ◽  
Mauro Di Giancamillo ◽  
Federica Boschetti ◽  
Liliana Carnevale ◽  
...  

Joint motion and postnatal stress of weight bearing are the principal factors that determine the phenotypical and architectural changes that characterize the maturation process of the meniscus. In this study, the effect of compressive forces on the meniscus will be evaluated in a litter of 12 Dobermann Pinschers, of approximately 2 months of age, euthanized as affected by the quadriceps contracture muscle syndrome of a single limb focusing on extracellular matrix remodeling and cell–extracellular matrix interaction (i.e., meniscal cells maturation, collagen fibers typology and arrangement). The affected limbs were considered as models of continuous compression while the physiologic loaded limbs were considered as controls. The results of this study suggest that a compressive continuous force, applied to the native meniscal cells, triggers an early maturation of the cellular phenotype, at the expense of the proper organization of collagen fibers. Nevertheless, an application of a compressive force could be useful in the engineering process of meniscal tissue in order to induce a faster achievement of the mature cellular phenotype and, consequently, the earlier production of the fundamental extracellular matrix (ECM), in order to improve cellular viability and adhesion of the cells within a hypothetical synthetic scaffold.


2019 ◽  
Vol 48 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Hongyao Xu ◽  
Xiangjie Zou ◽  
Pengcheng Xia ◽  
Mohammad Ahmad Kamal Aboudi ◽  
Ran Chen ◽  
...  

Background: Meniscal injury is very common, and injured meniscal tissue has a limited healing ability because of poor vascularity. Platelets contain both pro- and anti-angiogenic factors, which can be released by platelet selective activation. Hypothesis: Platelets release a high level of vascular endothelial growth factor (VEGF) when they are activated by protease-activated receptor 1 (PAR1), whereas the platelets release endostatin when they are activated by protease-activated receptor 4 (PAR4). The PAR1-treated platelets enhance the proliferation of meniscal cells in vitro and promote in vivo healing of wounded meniscal tissue. Study Design: Controlled laboratory study. Method: Platelets were isolated from human blood and activated with different reagents. The released growth factors from the activated platelets were determined by immunostaining and enzyme-linked immunosorbent assay. The effects of the platelets with different treatments on meniscal cells were tested by an in vitro model of cell culture and an in vivo model of wounded meniscal healing. Results: The results indicated that platelets contained both pro- and antiangiogenic factors including VEGF and endostatin. In unactivated platelets, VEGF and endostatin were contained inside of the platelets. Both VEGF and endostatin were released from the platelets when they were activated by thrombin. However, only VEGF was released from the platelets when they were activated by PAR1, and only endostatin was released from the platelets when they were activated by PAR4. The rat meniscal cells grew much faster in the medium that contained PAR1-activated platelets than in the medium that contained either PAR4-activated platelets or unactivated platelets. The wounds treated with PAR1-activated platelets healed faster than those treated with either PAR4-activated platelets or unactivated platelets. Many blood vessel–like structures were found in the wounded menisci treated with PAR1-activated platelets. Conclusion: The PAR1-activated platelets released high levels of VEGF, which increased the proliferation of rat meniscal cells in vitro, enhanced the vascularization of menisci in vivo, and promoted healing of wounded menisci. Clinical Relevance: Our results suggested that selective activated platelets can be used clinically to enhance healing of wounded meniscal tissue.


Sign in / Sign up

Export Citation Format

Share Document