scholarly journals Analysis of the Interactions of Preproteins with the Import Machinery over the Course of Protein Import into Chloroplasts

1997 ◽  
Vol 139 (7) ◽  
pp. 1677-1685 ◽  
Author(s):  
Andrei Kouranov ◽  
Danny J. Schnell

We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.

2001 ◽  
Vol 154 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Andreas Hiltbrunner ◽  
Jörg Bauer ◽  
Pierre-Alexandre Vidi ◽  
Sibylle Infanger ◽  
Petra Weibel ◽  
...  

Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of atToc159 between a soluble and an integral membrane form.


2021 ◽  
Author(s):  
Lucia E Gross ◽  
Anna Klinger ◽  
Nicole Spies ◽  
Theresa Ernst ◽  
Nadine Flinner ◽  
...  

Abstract The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of TOC (translocon of the outer chloroplast membrane). After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.


2000 ◽  
Vol 28 (4) ◽  
pp. 485-491 ◽  
Author(s):  
K. Chen ◽  
X. Chen ◽  
D. J. Schnell

The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toe apparatus) and inner (Tic apparatus) envelope membranes.


1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


2014 ◽  
Vol 5 ◽  
Author(s):  
Lynn G. L. Richardson ◽  
Yamuna D. Paila ◽  
Steven R. Siman ◽  
Yi Chen ◽  
Matthew D. Smith ◽  
...  

1989 ◽  
Vol 109 (2) ◽  
pp. 487-493 ◽  
Author(s):  
S Hwang ◽  
T Jascur ◽  
D Vestweber ◽  
L Pon ◽  
G Schatz

Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free of outer membrane components. Third, import into purified inner membrane vesicles is insensitive to antibody against the outer membrane. Thus, while outer membrane components are clearly required in vivo, the inner membrane contains a complete protein translocation system that can operate by itself if the outer membrane barrier is removed.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 699-708 ◽  
Author(s):  
Alexander Grevel ◽  
Thomas Becker

AbstractMitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.


Sign in / Sign up

Export Citation Format

Share Document