chloroplast biogenesis
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 45)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Namraj Dhami ◽  
Barry J Pogson ◽  
David T Tissue ◽  
Christopher I Cazzonelli

Abstract Background: Plastid-derived metabolites can signal control over nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. Norflurazon (NFZ) inhibition of carotenoid biosynthesis in seedlings can elicit a protoporphyrin retrograde signal that controls chlorophyll and chloroplast biogenesis. Recent evidence reveals that plastid development can be regulated by carotenoid cleavage products called apocarotenoids. The key steps in carotenoid biosynthesis and catabolism that generate apocarotenoid signalling metabolites in foliar tissues remains to be elucidated. Here, we established an Arabidopsis foliar pigment-based bioassay using detached rosettes to differentiate plastid signalling processes in young expanding leaves containing dividing cells with active chloroplast biogenesis, from fully expanded leaves containing mature chloroplasts. Results: We demonstrate that environmental (extended darkness and cold exposure) as well as chemical (norflurazon; NFZ) inhibition of carotenoid biosynthesis can reduce chlorophyll levels in young, but not older leaves following a 24 h of rosette treatment. Mutants that disrupted xanthophyll accumulation, phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. Perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young but not older leaves of plants growing under a long photoperiod. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity triggered phytoene accumulation more so in younger relative to older leaves from both WT and the crtiso mutant, indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway for carotenogenesis. NFZ treatment of WT and crtiso mutant rosettes reveal similar, additive, and opposite effects on individual pigment accumulation.Conclusion: The Arabidopsis foliar pigment-based bioassay was used to differentiate signalling events elicited by environmental, chemical, genetic, and combinations thereof, that control chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION generated a signal that rate-limited chlorophyll accumulation, but not phytoene biosynthesis in young Arabidopsis leaves exposed to a long photoperiod. Findings generated using this new foliar pigment bioassay implicate that carotenoid isomerisation and NFZ elicit different signalling pathways to control chlorophyll homeostasis in young emerging leaves.


2021 ◽  
Author(s):  
Joy Collombat ◽  
Thibaut Pralon ◽  
Jenny Pego Magalhaes ◽  
Sarah Rottet ◽  
Brigitte Ksas ◽  
...  

Abstract Multiple chloroplast-to-nucleus signaling pathways contribute to the regulation of chloroplast biogenesis during plant greening. Here, we provide evidence for the direct implication of the atypical kinase ABC1K1. ABC1K1 is required for sufficient plastoquinone (PQ) allocation to the photosynthetic electron transport chain. Unexpectedly, mutation of abc1k1 suppresses greening and results in pale cotyledons under red light. This phenotype was not observed in other photosynthetic mutants and points to a specific signaling defect. Under red light, abc1k1 accumulated EXECUTER1 (EX1), a trigger of singlet oxygen (1O2) signaling. Consistent with the role of the FTSH metalloprotease in chloroplast biogenesis and EX1 degradation, the ftsh2 mutant var2, mimicked the greening defect of abc1k1 and accumulated EX1 under red light. We propose that this novel ABC1K1-dependent signal is required for chloroplast biogenesis to progress in challenging light conditions.


2021 ◽  
Author(s):  
Zizhen Liang ◽  
Wai Tsun Yeung ◽  
Keith Ka Ki Mai ◽  
Juncai Ma ◽  
Zhongyuan Liu ◽  
...  

AbstractThe crystalline structure of prolamellar bodies (PLBs) and light-induced etioplasts-to-chloroplasts transformation have been investigated with electron microscopy methods. However, these studies suffer from chemical fixation artifacts and limited volumes of tomographic reconstruction. We have examined Arabidopsis thaliana cotyledon samples preserved by high-pressure freezing with scanning transmission electron tomography to visualize larger volumes in etioplasts and their conversion into chloroplasts. PLB tubules were arranged in a zinc blende-type lattice like carbon atoms in diamonds. Within 2 hours after illumination, the lattice collapsed from the PLB exterior and the disorganized tubules merged to form fenestrated sheets that eventually matured into lamellar thylakoids. These planar thylakoids emerging from PLBs overlapped or folded into grana stacks in PLBs’ vicinity. Since the nascent lamellae had curved membrane at their tips, we examined the localization of CURT1 proteins. CURT1A transcript was most abundant in de-etiolating cotyledon samples, and CURT1A concentrated at the peripheral PLB. In curt1a mutant etioplasts, thylakoid sheets were swollen and failed to develop stacks. In curt1c mutant, however, PLBs had cracks in their lattices, indicating that CURT1C contributes to cubic crystal growth under darkness. Our data provide evidence that CURT1A and CURT1C play distinct roles in the etioplast and chloroplast biogenesis.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Julie Canonge ◽  
Charlotte Roby ◽  
Céline Hamon ◽  
Philippe Potin ◽  
Thomas Pfannschmidt ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
M. Luisa Hernández ◽  
Francisco Javier Cejudo

Plant productivity is determined by the conversion of solar energy into biomass through oxygenic photosynthesis, a process performed by protein-cofactor complexes including photosystems (PS) II and I, and ATP synthase. These complexes are embedded in chloroplast thylakoid membrane lipids, which thus function as structural support of the photosynthetic machinery and provide the lipid matrix to avoid free ion diffusion. The lipid and fatty acid composition of thylakoid membranes are unique in chloroplasts and cyanobacteria, which implies that these molecules are specifically required in oxygenic photosynthesis. Indeed, there is extensive evidence supporting a relevant function of glycerolipids in chloroplast biogenesis and photosynthetic efficiency in response to environmental stimuli, such as light and temperature. The rapid acclimation of higher plants to environmental changes is largely based on thiol-based redox regulation and the disulphide reductase activity thioredoxins (Trxs), which are reduced by ferredoxin (Fdx) via an Fdx-dependent Trx reductase. In addition, chloroplasts harbour an NADPH-dependent Trx reductase C, which allows the use of NADPH to maintain the redox homeostasis of the organelle. Here, we summarise the current knowledge of chloroplast lipid metabolism and the function of these molecules as structural basis of the complex membrane network of the organelle. Furthermore, we discuss evidence supporting the relevant role of lipids in chloroplast biogenesis and photosynthetic performance in response to environmental cues in which the redox state of the organelle plays a relevant role.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kunneng Zhou ◽  
Caijuan Zhang ◽  
Jiafa Xia ◽  
Peng Yun ◽  
Yuanlei Wang ◽  
...  

Abstract Background Ribosomes responsible for transcription and translation of plastid-encoded proteins in chloroplasts are essential for chloroplast development and plant growth. Although most ribosomal proteins in plastids have been identified, the molecular mechanisms regulating chloroplast biogenesis remain to be investigated. Results Here, we identified albinic seedling mutant albino seedling lethality 4 (asl4) caused by disruption of 30S ribosomal protein S1 that is targeted to the chloroplast. The mutant was defective in early chloroplast development and chlorophyll (Chl) biosynthesis. A 2855-bp deletion in the ASL4 allele was verified as responsible for the mutant phenotype by complementation tests. Expression analysis revealed that the ASL4 allele was highly expressed in leaf 4 sections and newly expanded leaves during early leaf development. Expression levels were increased by exposure to light following darkness. Some genes involved in chloroplast biogenesis were up-regulated and others down-regulated in asl4 mutant tissues compared to wild type. Plastid-encoded plastid RNA polymerase (PEP)-dependent photosynthesis genes and nuclear-encoded phage-type RNA polymerase (NEP)-dependent housekeeping genes were separately down-regulated and up-regulated, suggesting that plastid transcription was impaired in the mutant. Transcriptome and western blot analyses showed that levels of most plastid-encoded genes and proteins were reduced in the mutant. The decreased contents of chloroplast rRNAs and ribosomal proteins indicated that chloroplast ribosome biogenesis was impaired in the asl4 mutant. Conclusions Rice ASL4 encodes 30S ribosomal protein S1, which is targeted to the chloroplast. ASL4 is essential for chloroplast ribosome biogenesis and early chloroplast development. These data will facilitate efforts to further elucidate the molecular mechanism of chloroplast biogenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Naresh Loudya ◽  
Priyanka Mishra ◽  
Kotaro Takahagi ◽  
Yukiko Uehara-Yamaguchi ◽  
Komaki Inoue ◽  
...  

Abstract Background The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. Results Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. Conclusions Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.


Author(s):  
Xin-Yuan Liu ◽  
Rui-Cheng Jiang ◽  
Yong Wang ◽  
Jiao-Jiao Tang ◽  
Feng Sun ◽  
...  

Abstract Pentatricopeptide repeat (PPR) proteins are involved in the C-to-U RNA editing of organellar transcripts. Maize genome contains over 600 PPR proteins and few have been found to function in the C-to-U RNA editing in chloroplasts. Here, we report the function of ZmPPR26 in the C-to-U RNA editing and chloroplast biogenesis in maize. ZmPPR26 encodes a DYW-type PPR protein targeted to chloroplasts. The zmppr26 mutant exhibits albino seedling-lethal phenotype. Loss-function of ZmPPR26 abolishes the editing at atpA-1148 site, and decreases the editing at ndhF-62, rpl20-308, rpl2-2, rpoC2-2774, petB-668, rps8-182, and ndhA-50 sites. Over-expression of ZmPPR26 in zmppr26 restores the editing efficiency and rescues the albino seedling-lethal phenotype. Abolished editing at atpA-1148 causes a Leu to Ser change at AtpA-383 that leads to a reduction in the abundance of chloroplast ATP synthase in zmppr26. The protein accumulation and content of photosynthetic complexes are also markedly reduced in zmppr26, providing an explanation for the albino seedling-lethal phenotype. These results indicate that ZmPPR26 is required for the editing at atpA-1148 and important for the editing at the other seven sites in maize chloroplast. The editing at atpA-1148 is critical to the AtpA function, assembly of ATP synthase complex, and chloroplast biogenesis in maize.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongjian Qiu ◽  
Elise K. Pasoreck ◽  
Chan Yul Yoo ◽  
Jiangman He ◽  
He Wang ◽  
...  

AbstractDaytime warm temperature elicits thermomorphogenesis in Arabidopsis by stabilizing the central thermoregulator PHYTOCHROME INTERACTING transcription FACTOR 4 (PIF4), whose degradation is otherwise promoted by the photoreceptor and thermosensor phytochrome B. PIF4 stabilization in the light requires a transcriptional activator, HEMERA (HMR), and is abrogated when HMR’s transactivation activity is impaired in hmr-22. Here, we report the identification of a hmr-22 suppressor mutant, rcb-101, which surprisingly carries an A275V mutation in REGULATOR OF CHLOROPLAST BIOGENESIS (RCB). rcb-101/hmr-22 restores thermoresponsive PIF4 accumulation and reverts the defects of hmr-22 in chloroplast biogenesis and photomorphogenesis. Strikingly, similar to hmr, the null rcb-10 mutant impedes PIF4 accumulation and thereby loses the warm-temperature response. rcb-101 rescues hmr-22 in an allele-specific manner. Consistently, RCB interacts directly with HMR. Together, these results unveil RCB as a novel temperature signaling component that functions collaboratively with HMR to initiate thermomorphogenesis by selectively stabilizing PIF4 in the daytime.


Sign in / Sign up

Export Citation Format

Share Document