membrane component
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 62)

H-INDEX

47
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8343
Author(s):  
Zhanyi Xiang ◽  
Yifei Jing ◽  
Hidekazu Ikezaki ◽  
Kiyoshi Toko

The lipid phosphoric acid di-n-decyl ester (PADE) has played an important role in the development of taste sensors. As previously reported, however, the concentration of PADE and pH of the solution affected the dissociation of H+, which made the measurement results less accurate and stable. In addition, PADE caused deterioration in the response to bitterness because PADE created the acidic environment in the membrane. To solve these problems, our past study tried to replace the PADE with a completely dissociated substance called tetrakis [3,5-bis (trifluoromethyl) phenyl] borate sodium salt dehydrate (TFPB) as lipid. To find out whether the two substances can be effectively replaced, it is necessary to perform an in-depth study on the properties of the two membranes themselves. In this study, we fabricated two types of membrane electrodes, based on PADE or TFPB, respectively, using 2-nitrophenyl octyl ether (NPOE) as a plasticizer. We measured the selectivity to cations such as Cs+, K+, Na+ and Li+, and also the membrane impedance of the membranes comprising PADE or TFPB of the different concentrations. As a result, we found that any concentration of PADE membranes always had low ion selectivity, while the ion selectivity of TFPB membranes was concentration-dependent, showing increasing ion selectivity with the TFPB concentrations. The ion selectivity order was Cs+>K+>Na+>Li+. The hydration of ions was considered to participate in this phenomenon. In addition, the membrane impedance decreased with increasing PADE and TFPB concentrations, while the magnitudes differed, implying that there is a difference in the dissociation of the two substances. The obtained results will contribute to the development of novel receptive membranes of taste sensors.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3520
Author(s):  
Lihua Wang-Eckhardt ◽  
Ivonne Becker ◽  
Matthias Eckhardt

Sulfatide synthesis in the human renal cancer cell line SMKT-R3 was strongly inhibited in the presence of low µM concentrations of AG-205, a progesterone receptor membrane component 1 (PGRMC1) antagonist. This was also the case in Chinese hamster ovary (CHO) cells stably transfected with UDP-galactose: ceramide galactosyltransferase and cerebroside sulfotransferase, the two enzymes required for sulfatide synthesis. In CHO cells synthesizing galactosylceramide but not sulfatide, galactosylceramide was also strongly reduced, suggesting an effect at the level of galactolipid synthesis. Notably, AG-205 inhibited galactosylceramide synthesis to a similar extent in wild type CHO cells and cells that lack PGRMC1 and/or PGRMC2. In vitro enzyme activity assays showed that AG-205 is an inhibitor of UDP-galactose: ceramide galactosyltransferase, but not cerebroside sulfotransferase. This study shows that PGRMC1 is only one of several targets of AG-205 and should be used with caution, especially in studies using cells synthesizing galactosylceramide and sulfatide.


Author(s):  
Solaipriya Solairaja ◽  
Satish Ramalingam ◽  
Nageswara Rao Dunna ◽  
Sivaramakrishnan Venkatabalasubramanian

: Progesterone receptor membrane component 1 (PGRMC1) is a trans-membrane evolutionarily conserved protein with a cytochrome b5 like heme/steroid binding domain. PGRMC1 clinical levels are strongly suggested to correlate with poor patient survival and lung cancer prognosis. PGRMC1 has been reported to possess pleiotropic functions, such as participating in cellular and membrane trafficking, steroid hormone signaling, cholesterol metabolism and steroidogenesis, glycolysis and mitochondrial energy metabolism, heme transport and homeostasis, neuronal movement and synaptic function, autophagy, anti-apoptosis, stem cell survival and the list is still expanding. PGRMC1 mediates its pleiotropic functions through its ability to interact with multiple binding partners, such as epidermal growth factor receptor (EGFR), sterol regulatory element binding protein cleavage activating protein (SCAP), insulin induced gene-1 protein (Insig-1), heme binding proteins (hepcidin, ferrochelatase and cyp450 members), plasminogen activator inhibitor 1 RNA binding protein (PAIR-BP1). In this review, we provide a comprehensive overview of PGRMC1 and its associated pleiotropic functions that are indispensable for lung cancer promotion and progression, suggesting it as a prospective therapeutic target for intervention. Notably, we have compiled and reported various preclinical studies wherein prospective agonists and antagonists had been tested against PGRMC1 expressing cancer cell lines, suggesting it as a prospective therapeutic target for cancer intervention.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5953
Author(s):  
John J. Peluso ◽  
James K. Pru

Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs’ mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewa Monika Drzewiecka ◽  
Wiktoria Kozlowska ◽  
Agata Zmijewska ◽  
Anita Franczak

AbstractThis study hypothesized that female peri-conceptional undernutrition evokes transcriptomic alterations in the pig myometrium during the peri-implantation period. Myometrium was collected on days 15–16 of pregnancy from pigs fed a normal- (n = 4) or restricted-diet (n = 4) from conception until day 9th of pregnancy, and the transcriptomic profiles of the tissue were compared using Porcine (V2) Expression Microarrays 4 × 44 K. In restricted diet-fed pigs, 1021 differentially expressed genes (DEGs) with fold change ≥ 1.5, P ≤ 0.05 were revealed, and 708 of them were up-regulated. Based on the count score, the top within GOs was GO cellular components “extracellular exosome”, and the top KEGG pathway was the metabolic pathway. Ten selected DEGs, i.e. hydroxysteroid (17β) dehydrogenase 8, cyclooxygenase 2, prostaglandin F receptor, progesterone receptor membrane component 1, progesterone receptor membrane component 2, annexin A2, homeobox A10, S-phase cyclin A-associated protein in the ER, SRC proto-oncogene, non-receptor tyrosine kinase, and proliferating cell nuclear antigen were conducted through qPCR to validate microarray data. In conclusion, dietary restriction during the peri-conceptional period causes alterations in the expression of genes encoding proteins involved i.a. in the endocrine activity of the myometrium, embryo-maternal interactions, and mechanisms regulating cell cycle and proliferation.


2021 ◽  
pp. 101316
Author(s):  
Meredith R. McGuire ◽  
Debaditya Mukhopadhyay ◽  
Stephanie L. Myers ◽  
Eric P. Mosher ◽  
Rita T. Brookheart ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9575
Author(s):  
Anu Jose ◽  
Petra C. Kienesberger

Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy.


Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e71
Author(s):  
Atsuya Tsuru ◽  
Mikihiro Yoshie ◽  
Ryo Yonekawa ◽  
Junya Kojima ◽  
Kazuya Kusama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document