scholarly journals Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein

1998 ◽  
Vol 143 (3) ◽  
pp. 673-685 ◽  
Author(s):  
Torsten Wittmann ◽  
Haralabia Boleti ◽  
Claude Antony ◽  
Eric Karsenti ◽  
Isabelle Vernos

Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.

2000 ◽  
Vol 149 (7) ◽  
pp. 1405-1418 ◽  
Author(s):  
Torsten Wittmann ◽  
Matthias Wilm ◽  
Eric Karsenti ◽  
Isabelle Vernos

TPX2, the targeting protein for Xenopus kinesin-like protein 2 (Xklp2), was identified as a microtubule-associated protein that mediates the binding of the COOH-terminal domain of Xklp2 to microtubules (Wittmann, T., H. Boleti, C. Antony, E. Karsenti, and I. Vernos. 1998. J. Cell Biol. 143:673–685). Here, we report the cloning and functional characterization of Xenopus TPX2. TPX2 is a novel, basic 82.4-kD protein that is phosphorylated during mitosis in a microtubule-dependent way. TPX2 is nuclear during interphase and becomes localized to spindle poles in mitosis. Spindle pole localization of TPX2 requires the activity of the dynein–dynactin complex. In late anaphase TPX2 becomes relocalized from the spindle poles to the midbody. TPX2 is highly homologous to a human protein of unknown function and thus defines a new family of vertebrate spindle pole components. We investigated the function of TPX2 using spindle assembly in Xenopus egg extracts. Immunodepletion of TPX2 from mitotic egg extracts resulted in bipolar structures with disintegrating poles and a decreased microtubule density. Addition of an excess of TPX2 to spindle assembly reactions gave rise to monopolar structures with abnormally enlarged poles. We conclude that, in addition to its function in targeting Xklp2 to microtubule minus ends during mitosis, TPX2 also participates in the organization of spindle poles.


1997 ◽  
Vol 138 (3) ◽  
pp. 615-628 ◽  
Author(s):  
Rebecca Heald ◽  
Régis Tournebize ◽  
Anja Habermann ◽  
Eric Karsenti ◽  
Anthony Hyman

In Xenopus egg extracts, spindles assembled around sperm nuclei contain a centrosome at each pole, while those assembled around chromatin beads do not. Poles can also form in the absence of chromatin, after addition of a microtubule stabilizing agent to extracts. Using this system, we have asked (a) how are spindle poles formed, and (b) how does the nucleation and organization of microtubules by centrosomes influence spindle assembly? We have found that poles are morphologically similar regardless of their origin. In all cases, microtubule organization into poles requires minus end–directed translocation of microtubules by cytoplasmic dynein, which tethers centrosomes to spindle poles. However, in the absence of pole formation, microtubules are still sorted into an antiparallel array around mitotic chromatin. Therefore, other activities in addition to dynein must contribute to the polarized orientation of microtubules in spindles. When centrosomes are present, they provide dominant sites for pole formation. Thus, in Xenopus egg extracts, centrosomes are not necessarily required for spindle assembly but can regulate the organization of microtubules into a bipolar array.


2006 ◽  
Vol 17 (9) ◽  
pp. 3806-3818 ◽  
Author(s):  
Arturo V. Orjalo ◽  
Alexei Arnaoutov ◽  
Zhouxin Shen ◽  
Yekaterina Boyarchuk ◽  
Samantha G. Zeitlin ◽  
...  

The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.


2014 ◽  
Vol 206 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Kara J. Helmke ◽  
Rebecca Heald

The spindle segregates chromosomes in dividing eukaryotic cells, and its assembly pathway and morphology vary across organisms and cell types. We investigated mechanisms underlying differences between meiotic spindles formed in egg extracts of two frog species. Small Xenopus tropicalis spindles resisted inhibition of two factors essential for assembly of the larger Xenopus laevis spindles: RanGTP, which functions in chromatin-driven spindle assembly, and the kinesin-5 motor Eg5, which drives antiparallel microtubule (MT) sliding. This suggested a role for the MT-associated protein TPX2 (targeting factor for Xenopus kinesin-like protein 2), which is regulated by Ran and binds Eg5. Indeed, TPX2 was threefold more abundant in X. tropicalis extracts, and elevated TPX2 levels in X. laevis extracts reduced spindle length and sensitivity to Ran and Eg5 inhibition. Higher TPX2 levels recruited Eg5 to the poles, where MT density increased. We propose that TPX2 levels modulate spindle architecture through Eg5, partitioning MTs between a tiled, antiparallel array that promotes spindle expansion and a cross-linked, parallel architecture that concentrates MTs at spindle poles.


2021 ◽  
Author(s):  
George Cameron ◽  
Hasan Yardimci

Abstract Cell-free extracts from Xenopus laevis eggs are a model system for studying chromosome biology. Xenopus egg extracts can be synchronised in different cell cycle stages, making them useful for studying DNA replication, DNA repair and chromosome organisation. Combining single-molecule approaches with egg extracts is an exciting development being used to reveal molecular mechanisms that are difficult to study using conventional approaches. Fluorescence-based single-molecule imaging of surface-tethered DNAs has been used to visualise labelled protein movements on stretched DNA, the dynamics of DNA–protein complexes and extract-dependent structural rearrangement of stained DNA. Force-based single-molecule techniques are an alternative approach to measure mechanics of DNA and proteins. In this essay, the details of these single-molecule techniques, and the insights into chromosome biology they provide, will be discussed.


2008 ◽  
Vol 19 (7) ◽  
pp. 2752-2765 ◽  
Author(s):  
Xin Zhang ◽  
Stephanie C. Ems-McClung ◽  
Claire E. Walczak

During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Aurora A. This regulation is important to focus microtubules at aster centers and to facilitate the transition from asters to bipolar spindles. In particular, we found that MCAK colocalized with NuMA and XMAP215 at the center of Ran asters where its activity is regulated by Aurora A-dependent phosphorylation of S196, which contributes to proper pole focusing. In addition, we found that MCAK localization at spindle poles was regulated through another Aurora A phosphorylation site (S719), which positively enhances bipolar spindle formation. This is the first study that clearly defines a role for MCAK at the spindle poles as well as identifies another key Aurora A substrate that contributes to spindle bipolarity.


2016 ◽  
Vol 27 (9) ◽  
pp. 1451-1464 ◽  
Author(s):  
Hailing Zong ◽  
Stephanie K. Carnes ◽  
Christina Moe ◽  
Claire E. Walczak ◽  
Stephanie C. Ems-McClung

To ensure proper spindle assembly, microtubule (MT) dynamics needs to be spatially regulated within the cell. The kinesin-13 MCAK is a potent MT depolymerase with a complex subcellular localization, yet how MCAK spatial regulation contributes to spindle assembly is not understood. Here we show that the far C-terminus of MCAK plays a critical role in regulating MCAK conformation, subspindle localization, and spindle assembly in Xenopus egg extracts. Alteration of MCAK conformation by the point mutation E715A/E716A in the far C-terminus increased MCAK targeting to the poles and reduced MT lifetimes, which induced spindles with unfocused poles. These effects were phenocopied by the Aurora A phosphomimetic mutation, S719E. Furthermore, addition of the kinesin-14 XCTK2 to spindle assembly reactions rescued the unfocused-pole phenotype. Collectively our work shows how the regional targeting of MCAK regulates MT dynamics, highlighting the idea that multiple phosphorylation pathways of MCAK cooperate to spatially control MT dynamics to maintain spindle architecture.


2010 ◽  
Vol 191 (7) ◽  
pp. 1239-1249 ◽  
Author(s):  
Rose Loughlin ◽  
Rebecca Heald ◽  
François Nédélec

The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5–like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.


2013 ◽  
Vol 24 (22) ◽  
pp. 3522-3533 ◽  
Author(s):  
Shusheng Wang ◽  
Stephanie A. Ketcham ◽  
Arne Schön ◽  
Benjamin Goodman ◽  
Yueju Wang ◽  
...  

Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.


Sign in / Sign up

Export Citation Format

Share Document